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With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new
demands on mobile sensing, particularly in achieving high-accuracy and low-latency. Event-based vision has emerged as a disruptive
paradigm, offering high temporal resolution and low latency, making it well-suited for high-accuracy and low-latency sensing tasks
on high-agility platforms. However, the presence of substantial noisy events, lack of stable, persistent semantic information, and
large data volume pose challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the
literature from 2014 to 2025 and presents a comprehensive overview of event-based mobile sensing, encompassing its fundamental
principles, event abstraction methods, algorithm advancements, and both hardware and software acceleration strategies. We discuss
key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow, and 3D reconstruction,
while highlighting challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline
future research directions, such as improving the event camera with advanced optics, leveraging neuromorphic computing for efficient
processing, and integrating bio-inspired algorithms. To support ongoing research, we provide an open-source Online Sheet with recent
developments. We hope this survey serves as a reference, facilitating the adoption of event-based vision across diverse applications.
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1 INTRODUCTION

Mobile sensing.With ongoing advancements in sensor technology and the proliferation of sophisticated computing
capabilities within embedded systems, mobile devices (e.g., drones and autonomous vehicles) have emerged as the most
groundbreaking innovations in recent years [1–5]. As illustrated in Fig.1, these devices are increasingly deployed in a
variety of novel applications, including last-mile delivery [5], industrial inspection [6–8], rapid relief-and-rescue [9],
aerial imaging [10] and sky networking [11], particularly within smart city scenarios. To perform these tasks, which
require extensive interaction with the external environment, mobile devices must possess the ability to: (𝑖) awareness
their own state, including location and orientation [12–14], (𝑖𝑖) comprehend their surroundings, (e.g., environmental
structure and map) [15], and (𝑖𝑖𝑖) understand their relationship with the environment, such as the spatio-temporal
relationships between mobile devices and objects within their surroundings [16]. Achieving these capabilities has
become a focal point of interest within the mobile computing community.

High agility trend of mobile devices. In context of smart city scenarios, the demand for mobile devices is
progressively increasing, with their mission profiles evolving toward execution of 4D tasks, which are characterized
as deep, dull, dangerous, and dirty [17]. The expanding scale of cities also necessitates that mobile devices complete
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Fig. 1. Mobile devices are used in various applications, with key tasks including state estimation, environment perception, and
understanding device-environment interactions. As devices become more agile, mobile sensing faces higher demands for accuracy and
latency. This requires tight coordination between sensors and algorithms: (i) sensors must capture high-precision data with minimal
delay; (ii) algorithms must efficiently process data within resource constraints. Traditional sensors fall short of these needs, whereas
event cameras—capable of asynchronously capturing pixel-level intensity changes with microsecond latency—offer transformative
potential. This survey presents a comprehensive review of event cameras and the development of efficient, accurate algorithms.

various tasks within shorter time frames, driving their evolution toward high-speed operation [1, 18]. Consequently,
the development of mobile devices is exhibiting new trends toward high agility. For instance, DJI’s industrial inspection
drones can cruise at speeds of 21𝑚/𝑠 [19], while Wing’s delivery drones fly at 30𝑚/𝑠 to deliver packages [20].

New challenges for mobile sensing. As mobile devices evolve toward high agility design, mobile sensing is
required to advance toward high accuracy and low latency, enabling these mobile devices to perceive their state and
surroundings in𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟 -level accuracy with𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑-level latency, thereby facilitating faster responses and more
precise adjustments. This evolution establishes new objectives for the sensors and data processing algorithms involved
in mobile sensing tasks: (𝑖) On the sensor input front, it is essential to acquire higher accuracy raw data with lower
latency. (𝑖𝑖) On data processing algorithms front, efficient processing of sensor measurements is essential to enhance
accuracy in mobile sensing tasks while optimizing performance on resource-constrained platforms.

Existing sensors for mobile sensing. However, existing sensors increasingly struggle to meet the high accuracy
and low latency demands of mobile sensing, especially for environmental perception and interaction in high-agility
devices. (i) Radar-based solutions employ sensors such as LiDAR [1, 21], mmWave radar [22], and ultrasound radar,
which emit signals and estimate distances based on reflections. These methods track distance changes to update
device positions and infer spatial relationships. However, they suffer from either high latency or limited accuracy:
LiDAR achieves millimeter-level accuracy but requires point accumulation into frames at low frequencies (e.g., 10 Hz),
introducing delays up to 100 ms; mmWave radar offers millisecond latency but lacks sufficient spatial resolution for
millimeter accuracy. (ii) Camera-based methods use monocular [23, 24] and stereo cameras [25] for self-localization
and environment mapping via SLAM [26]. Yet, these approaches are computationally demanding and limited by low
temporal resolution (<30 Hz), relatively high latency (>30 ms), and standard dynamic range (60 dB), making them
inadequate for high-agility mobile platforms.

New sensor: Event camera. The event cameras are novel bio-inspired sensors that outputs pixel-wise intensity
changes in an asynchronous manner [27, 32]. Unlike frame cameras, it generates output based on scene dynamics
rather than a global clock that is independent of the scene [33]. The event cameras offer four key advantages that align
well with the requirements of mobile sensing tasks for high-agility mobile devices: (𝑖) The 𝜇s-level temporal resolution

refers to the time interval between two consecutive samples. A higher temporal resolution implies a smaller interval,
enabling event cameras to capture high-speed motions without motion blur and thereby supporting accurate perception
during fast operations [34]. (𝑖𝑖) The 𝜇s-level sensing latency denotes the time required for the sensor to respond to a
change in illumination by producing an output. A lower latency allows environmental changes to be reported to mobile
Manuscript submitted to ACM
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Table 1. Summary of topics covered in various studies

Topic
Design of
event
camera

Adv. of
event
camera

Gen.
model of
event

HW
design Products Datasets Repr. Denoising

Filtering
and

feature
ext.

Matching Mapping Accel. App.
Adv. in
mobile
comp.

Challenge
in mobile
comp.

[27]
(2020)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[28]
(2023)

✓ ✓ ✓ ✓ ✓ ✓

[29]
(2024)

✓ ✓ ✓ ✓ ✓

[30]
(2024)

✓ ✓ ✓ ✓ ✓ ✓

[31]
(2024)

✓ ✓ ✓ ✓ ✓ ✓ ✓

This
survey

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: Abbreviations used: Avg. (Advantage), Gen. model (Generation model), HW (Hardware), Repr. (Representations),
feature ext. (Feature extraction), Accel. (Acceleration), App. (Application), mobile comp. (Mobile computing).

platforms almost instantaneously [35]. (𝑖𝑖𝑖) The high dynamic range (HDR), which is 140 𝑑𝐵 compared to 60 𝑑𝐵 for
standard cameras, making it effective in diverse lighting conditions [33, 36]. (𝑖𝑣) The low power consumption (e.g., 0.5
𝑊 ) makes it particularly suitable for efficient designed mobile devices [37]. These advantages position event cameras as
a promising technology to empower mobile devices designed for high-speed operation and efficiency.

Event-based data processing algorithms. Event cameras offer high-accuracy, low-latency data acquisition but face
three main processing challenges: (i) Event cameras’ sensitivity to illumination causing significant noise, (ii) Event data
lacks stable, persistent texture and cannot provide consistent information, as events are generated only at image edges
depending on motion and scene texture, complicating feature extraction and long-term data association. (iii) Large
data volume leading to high computational load on mobile devices. Efficient and accurate event data processing is thus
crucial for resource-limited, agile mobile platforms to perceive their state and environment quickly. This survey reviews
event processing algorithms across six key stages: event representation, denoising, filtering and feature extraction,
matching, mapping, and hardware/software acceleration.

Difference between existing surveys. As shown in Fig.2, this survey extends previous surveys by focusing on how

event cameras enable high-agility, resource-constrained mobile devices to achieve high-accuracy and low-latency self-state

estimation and environmental understanding and extending prior surveys by incorporating literature from 2023–2025. It
outlines the processing workflow of event data and reviews the advancements at each stage of this workflow. Using the
key metrics of accuracy and efficiency in mobile computing, we summarize various methods in each stage to provide
a deeper analysis of cutting-edge research, and assess each stage under latency, accuracy, and power constraints. It
also covers work on event-based hardware and software acceleration, offering insights for deploying event cameras on
resource-constrained mobile devices. Finally, we discuss applications of event cameras on mobile platforms.

Contribution. The main contribution of the survey paper is summarized as follows.
(1) We extend prior surveys by presenting a comprehensive review of how event cameras empower high-agility,
resource-constrained mobile devices to achieve accurate, low-latency self-state estimation and environmental sensing.
(2) We present an in-depth introduction to event generation models, the design of event camera hardware, existing
commercial products, and benchmark datasets for event-based vision.
(3) We highlight unique advantages of event cameras in mobile sensing, as well as the specific challenges they encounter.
(4) We categorize event stream processing methods into distinct stages and present a comprehensive review of each,
covering event stream representation, data processing algorithms, acceleration strategies, and applications on event-
based mobile platforms. Furthermore, we evaluate these stages with respect to latency, accuracy, and power constraints.
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Fig. 2. Structure of this survey.

(5) We present our insights and solutions for future trends, with a particular focus on bio-inspired event camera
hardware design, algorithm development, and hardware-software co-optimization techniques.

Online resource. This survey presents a comprehensive review of event-based sensing systems, focusing on key
technological advancements and practical applications. To further support the research community, we have established
an open-source Online Sheet 1, which is adapted from [38]. This online sheet will be regularly updated, ensuring access
to the latest developments and fostering continued innovation in event-based sensing systems.

Organization. Fig.2 illustrates the survey structure. Sec. 2 introduces event camera fundamentals, including principles,
hardware, products, datasets, and their pros and cons on mobile devices. Sec. 3 covers event stream abstractionmethods,
while Sec. 4 reviews event processing algorithms such as denoising, filtering, matching, and mapping. Sec. 5 discusses
hardware/software acceleration for resource-constrained devices, and Sec. 6 highlights mobile applications of event
cameras. Sec. 7 outlines future directions, with conclusions in Sec. 8.

2 PRIMER: EVENT CAMERA DEVELOPMENT

2.1 Event generation model

Unlike conventional cameras that capture images at fixed intervals, event cameras operate asynchronously by detecting
changes in log intensity at individual pixels, generating events only when significant changes occur. This characteristic
enables event cameras to achieve exceptionally high temporal resolution and effectively mitigate motion blur, particularly
in scenarios involving fast-moving objects.

1Event-based mobile sensing resource
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Table 2. Classification of Event Camera Types

Indicator Original event camera[42] DVS [40] ATIS [41] DAVIS [43]

Development origin Mahowald & Mead, Caltech Inspired by silicon retina Evolved from DVS Advanced DVS/ATIS
Output data type Log brightness Change in brightness Change + absolute brightness Change + absolute brightness
Sensor type Large pixels, CMOS CMOS CMOS CMOS
Pixel structure Single-pixel design Smaller, simpler pixels Dual-subpixel Shared pixel/subpixel
Brightness measurement Continuous-time Change only Absolute + change Absolute + change
Dynamic range Limited Narrow High Moderate
Event synchronization Basic Fast reset Potential mismatch Slow sampling
Noise filtering Minimal Simple Complex Advanced

𝑰𝒌−𝟏

𝑰𝒌
Threshold 𝑪

𝑡𝑘−1
𝑡𝑘

Time

Pixel

Fig. 3. Principle of the Event Cameras: Events are generated based
on changes in logarithmic light intensity over time.

Each event is defined by the pixel location where
the change occurs, the timestamp, and the polar-
ity. Formally, an event can be represented as 𝑒𝑘 =

(𝑥𝑘 , 𝑡𝑘 , 𝑝𝑘 ), where 𝑒𝑘 denotes the event, 𝑥𝑘 specifies
the pixel location, 𝑡𝑘 represents the timestamp, and
𝑝𝑘 indicates the polarity of the change. The change
in log intensity is given by Δ𝐿(𝑥𝑘 , 𝑡𝑘 ) = 𝐿(𝑥𝑘 , 𝑡𝑘 ) −
𝐿(𝑥𝑘 , 𝑡𝑘 −Δ𝑡𝑘 ), where 𝐿(𝑥𝑘 , 𝑡𝑘 ) represents the log in-
tensity at pixel 𝑥𝑘 and time 𝑡𝑘 . As shown in Fig.3, an
event is triggered only when |Δ𝐿(𝑥𝑘 , 𝑡𝑘 ) | exceeds a
predefined threshold 𝐶 . The polarity 𝑝𝑘 is assigned
as +1 if Δ𝐿(𝑥𝑘 , 𝑡𝑘 ) > 0, and −1 otherwise. This event-
driven paradigm substantially reduces redundant data, enhancing processing efficiency, conserving computational
resources, and enabling deployment in resource-constrained systems such as embedded devices [39]. In practice,
threshold𝐶 can be adjusted to meet specific application needs and impacts event camera performance. A high𝐶 reduces
sensitivity, may missing subtle changes, while a low 𝐶 increases noise-triggered events, causing redundancy.
2.2 Hardware design

In this part, we will introduce hardware design of modern event cameras, as illustrated in Tab. 2.
General hardware architecture. As shown in Fig.4, event cameras employ CMOS sensors for low-latency operation,

which involves three steps: (𝑖) incident light generates electron–hole pairs, (𝑖𝑖) electrons are collected under an electric
field, and (𝑖𝑖𝑖) readout circuits convert them into voltage signals for logarithmic brightness computation. The event
circuit filters noise, applies a threshold, and triggers an event when exceeded, transmitting it to the processor.

DVS event camera [40]. The Dynamic Vision Sensor (DVS), inspired by the silicon retina, detects brightness changes
via capacitance coupling and resets after each measurement. It outputs only changes, enabling smaller pixel sizes but
restricting output to event data, which limits information extraction in static scenes.

ATIS event camera [41]. The Active Time-Image Sensor (ATIS) uses subpixels to measure absolute brightness,
doubling pixel area compared to DVS but enabling wide dynamic and static ranges for robust imaging under extreme
lighting. Its limitation lies in potential misalignment between absolute brightness (averaged across pixels) and event
data (triggered per pixel), especially during high-speed motion.

DAVIS event camera [43]. The Dynamic and Active Vision Sensor (DAVIS) is capable of outputting both absolute
brightness and event-based data. In DAVIS, pixels and subpixels share the same sensor, enabling a more compact design.
As a result, the pixel area is smaller than that of the ATIS, with only a modest 5% increase in size compared to the DVS.
However, the sampling speed of the DAVIS circuit is slower than that of the DVS circuit.
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Fig. 4. Working Mechanism of Event Cameras: Inspired by the rod cells in the human eye, event camera operates at the pixel level,
independently transforming light into voltage signals to capture intensity variations.

Beyond foundational architectures, modern event cameras are optimized for mobile platforms. Key trends include
more versatile readouts (e.g., hardware-generated event-accumulation views in the CeleX-V [44]), mobile-friendly
interfaces like MIPI CSI-2 (on the CeleX5-MIPI [45]), and ultra-low power optimization specifically targeting battery-
powered mobile devices (e.g., Prophesee’s GENX320-class sensors [46]). A detailed comparison of these commercial
products is presented in Section 2.5.

2.3 Advantages of event cameras in mobile sensing

High temporal resolution. The high agility of mobile devices induces rapid environmental changes, often causing
motion blur in frame cameras and limiting the responsiveness of radar- or camera-based solutions due to their low spatio-
temporal resolution. Temporal resolution, defined as the interval between consecutive samples, improves with shorter
intervals. Event cameras, with microsecond-level resolution and motion-blur-free sensing, enable timely detection of
both environmental dynamics and device state.

Low sensing latency. The high agility of mobile devices demands rapid awareness of both environmental and
self-state changes. Sensing latency, defined as the time required for a sensor to respond to environmental variations, is
relatively long in frame cameras due to their global exposure time (20 ms), which delays reactions and increases collision
risk. In contrast, event cameras employ independent pixels that trigger events immediately upon brightness changes,
achieving sub-millisecond latency and enabling mobile devices to detect and respond to changes instantaneously.

High dynamic range (HDR). Mobile devices are increasingly used in challenging environments, such as low-light
nighttime and bright daytime settings, requiring reliable sensing across varying lighting conditions. Standard frame
cameras have a dynamic range of about 60 𝑑𝐵, making them less effective in extreme lighting. Event cameras operate
on a logarithmic scale with independent pixels, offering a very high dynamic range with >120 𝑑𝐵. This enables them to
adapt to both extremely dark and bright conditions, making mobile devices suitable for a wider range of scenarios.

Low power consumption. Mobile devices in complex urban environments often prioritize efficiency but face
limited computation and power. Frame cameras require heavy processing and energy, whereas event cameras transmit
only brightness changes, reducing redundant data and easing computational and power demands to improve efficiency.

2.4 Challenges of event cameras in mobile sensing
Since event cameras operate fundamentally differently from frame-based cameras by capturing per-pixel brightness
changes asynchronously as events, their integration into mobile devices poses several challenges:

(i) How to mitigate event bursts and accurately extract features from event data, given the high-speed operation of
mobile devices and event cameras’ lack of stable, persistent semantic information? Event cameras are highly sensitive
to illumination changes, with even minor variations triggering numerous events. On high-agility mobile devices, rapid
scene changes captured by onboard event cameras can trigger event bursts, generating thousands of events in a short
Manuscript submitted to ACM
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time. Taking the DAVIS 346 event camera (346 × 260 resolution) as an example, let 𝑣 denote the translational velocity of
the drone and𝑤 its angular velocity. Under normal flight conditions (2m/s ≤ 𝑣 ≤ 4m/s, 5◦/s ≤ 𝑤 ≤ 15◦/s), the event
generation rate is 298 𝑒/𝑚𝑠 . During rapid translation (18m/s ≤ 𝑣 ≤ 25m/s, 5◦/s ≤ 𝑤 ≤ 15◦/s), the rate increases to
945 𝑒/𝑚𝑠 , while in rapid rotation (2m/s ≤ 𝑣 ≤ 4m/s, 75◦/s ≤ 𝑤 ≤ 95◦/s), it further rises to 1437 𝑒/𝑚𝑠 [39]. In contrast,
the data rate of a frame-based camera is independent of motion dynamics and scene content. Regardless of whether
the scene is static or highly dynamic, frames are sampled at a fixed rate, e.g., 1MP × 30fps = 30M pixels/s, resulting
in a stable and uniform data stream. This comparison highlights the non-uniform nature of event data: static scenes
generate almost no events, while high-speed motion can trigger explosive outputs far exceeding frame rates. This
sparsity–burst duality, coupled with the lack of stable texture or semantic cues, makes efficient processing difficult, as
meaningful signals are often buried in motion-induced noise.

(ii) How to efficiently process a large volume of event data given on-board constrained resources? Mobile devices
typically rely on low-power embedded systems for efficiency, inherently limiting their computational capacity. For
example, a smartphone SoC such as the Qualcomm Snapdragon 8Gen3 has a typical power budget of 5–7𝑊 , with
its integrated NPU delivering around 30𝑇𝑂𝑃𝑆 at INT8 precision. By contrast, a laptop equipped with an Intel Core
i7-13700H can consume up to 45𝑊 per CPU package and provide 1–2 𝑇𝐹𝐿𝑂𝑃𝑆 of FP32 compute power. For high-
performance drones, the NVIDIA Jetson Orin NX module consumes 15–25𝑊 and delivers 100 𝑇𝑂𝑃𝑆 of AI compute,
optimized for onboard vision tasks. In comparison, a NVIDIA GeForce RTX 4060Ti (160𝑊 ) offers up to 22𝑇𝐹𝐿𝑂𝑃𝑆 FP32
and 288 𝑇𝑂𝑃𝑆 INT8, while the RTX 4090 (450𝑊 ) reaches 83 𝑇𝐹𝐿𝑂𝑃𝑆 FP32 and over 1.3 𝑃𝑂𝑃𝑆 INT8. Clearly, mobile
devices trade computational resources for energy efficiency. Meanwhile, onboard event cameras capture rapid scene
changes, generating large volumes of events that demand efficient processing. For instance, the iniVation DVXplorer
can reach peak output rates above 1𝑀𝑒𝑝𝑠 , the Sony IMX636 sensor used in Prophesee Gen4.1 exceeds 10𝑀𝑒𝑝𝑠 , and the
high-speed CelePixel Taurus supports up to 240𝑀𝑒𝑝𝑠 . Such workloads heavily strain limited computational resources.
In a typical scenario, an algorithm processing a 5𝑀𝑒𝑝𝑠 event stream with 100 𝐺𝑂𝑃/𝑠 demand is trivial for an RTX
4060Ti (288 𝑇𝑂𝑃𝑆), leaving ample headroom for other tasks. For a smartphone NPU (30 𝑇𝑂𝑃𝑆), however, achieving low
latency and high energy efficiency is challenging due to memory sharing constraints and thermal throttling.

2.5 Commercial product & comparation
Event cameras are increasingly entering the commercial market, with several companies offering distinct products.
Representative suppliers include iniVation, Prophesee, Lucid Vision Labs and CelePixel. Their commercial offerings
emphasize features relevant to mobile and embedded contexts, such as low-power operation, compact modules, mobile-
friendly interfaces, or robust industrial connectivity.

Inivation is a prominent leader in the event camera industry, specializes in developing high-resolution, energy-
efficient event cameras [47]. Inivation’s flagship sensors, like the DAVIS240 and DAVIS346, combine event-based and
frame-based data, enabling real-time analysis of both modalities. With resolutions up to 1 megapixel, they rank among
the highest-resolution event cameras available. Designed for excellent low-light performance and outdoor durability,
these sensors are ideal for applications in robotics, autonomous systems, and more.

Prophesee is a leading innovator in event-based vision technology, renowned for its cameras’ ultra-high dynamic
range exceeding 120 dB [48]. Their flagship Metavision sensors, including the EVK4 HD and EVK5 HD cameras, offer
microsecond-level temporal resolution for applications requiring rapid response and high accuracy, such as autonomous
driving and industrial automation. Recently, they have introduced the GENX320, a new sensor designed with features
particularly beneficial for mobile sensing applications. With its compact 320×320 resolution, small 6.3µm pixels, and
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Table 3. Specifications of Event Camera Models for Mobile/Embedded Sensing Applications

Supplier Model Resolution Dynamic
Range (dB)

Pixel Size
(µm)

Power
Consumption

Mobile/Embedded Features

iniVation

DVXplorer 640×480 90-120 9.0 Max 12W Multi-camera synchronization;
Robust aluminum casing

DVXplorer Micro 640×480 110 9.0 <140mA @ 5VDC Compact and lightweight design

DAVIS346 346×260 120 18.5 Typical 180mA @
5VDC

Hybrid output (provides both event
and frame data)

DAVIS346 AER 346×260 120 18.5 Typical 180mA @
5VDC

Integrated IMU for self-contained
visual-inertial sensing

Prophesee
EVK4 HD 1280×720 >86 4.86×4.86 Typical 0.5W High-resolution sensor with

external trigger support

EVK5 HD 1280×720 >110 4.86×4.86 Typical 0.5W On-board advanced processing;
Hardware trigger support

GENX320 320×320 >120 6.3 3mW Ultra-low power consumption;
Compact, mobile-optimized design

CelePixel CeleX-V 1280×800 - 9.8 400mW Multi-mode output (Event,
Grayscale, Accumulated frames)

CeleX5-MIPI 1280×800 - 9.8 - Designed for direct, low-level
System-on-Chip (SoC) integration

Lucid Vision
Labs

TRT009S-EC 1280×720 120 4.86 - Industrial-grade robustness and
reliable data streaming

ultra-low power consumption, the GENX320 addresses key constraints in battery-powered mobile devices, making it
well-suited for applications such as AR/VR headsets, drones, and other embedded platforms [46].

Lucid Vision Labs, a manufacturer of industrial cameras [49], offers the TRT009S-EC Triton camera built on the
Sony IMX636 event sensor. It utilizes a GigE Vision interface with Power over Ethernet (PoE) to ensure robust and
reliable data streaming. This design prioritizes operational stability for mobile robotic platforms over the ultra-low
power consumption typical of other mobile-optimized sensors.

CelePixel developed smart sensory platforms with a unique on-chip processing architecture. While its official
website is inactive, technical resources remain available via software repositories. Their CeleX-V sensor [44] is notable
for a multi-mode capability, outputting events, full frames, and hardware-generated event-accumulation views. The
CeleX5-MIPI [45] variant targets mobile integration, providing a MIPI CSI-2 interface for low-power connection.

Comparation of products. Table 3 compares commercial event cameras, revealing significant diversity in their
specifications. Resolutions range from 320x320 to high-definition 1280x800 pixels, while a high dynamic range (often
>110 dB) is a common strength for challenging lighting. A critical differentiator is power consumption, which spans
from just 3 mW for mobile-optimized models to 12 W for high-performance ones. This reflects divergent design goals,
from ultra-low-power, compact devices to performance-focused industrial models with advanced features like integrated
IMUs, hybrid outputs, and multi-camera synchronization for complex robotic systems.

2.6 Event-based datasets

As shown in Tab. 4, event-based datasets serve as key benchmarks for robotics and visual perception.
MVSEC [50]. The MVSEC (Multi Vehicle Stereo Event Camera) dataset integrates data from event camera, stereo

frame-based camera, LiDAR, IMU, motion capture, and GPS, making it a comprehensive resource for tasks such as
stereo vision, SLAM, and autonomous driving. It provides synchronized stereo event streams and frame-based stereo
images captured from vehicles navigating diverse driving environments, including urban roads and highways.

DVS-Pedestrian [51]. The DVS-Pedestrian dataset is a benchmark dataset designed specifically for pedestrian
detection and tracking, captured using a DVS in various urban environments. It features sequences of pedestrians
performing various actions (walking, running, standing) under different lighting conditions and backgrounds.

DDD20 [52]. The DDD20 (Dynamic Driving Dataset 2020) features synchronized frame camera, event camera, and
IMU data from real-world urban and highway environments. It includes vehicles, pedestrians, cyclists and supports
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Table 4. Event-based Datasets

Dataset name Year Data Volume Perspective Participants Lighting
Conditions

Annotation
Count

Application
Scenario

MVSEC [50] 2018 - Dynamic Pedestrians, vehicles Daytime - Driving, handheld
scenes

DVS-Pedestrian [51] 2019 0.1 hours, 4.6K
annotations Dynamic Pedestrians Daytime 4.6K Walking street

DDD20 [52] 2020 51 hours Dynamic Pedestrians, vehicles Daytime, night - Driving

1 Mpx Automotive [56] 2020 15 hours Dynamic Cars, pedestrians,
two-wheelers Daytime, night 25M bboxes Object Detection

DSEC [53] 2021 1 hour, 390K
annotations Dynamic Pedestrians, vehicles,

scenes Daytime, night 390K Driving

TUM-VIE [54] 2021 21 video clips Dynamic Static objects Standard light,
low-light - 3D perception and

navigation

FE108 [57] 2021 1.5 hours Dynamic 21 object types LL, HDR, fast motion 208K
frames Object Tracking

VECtor [55] 2022 12 video clips Dynamic Static objects Standard light,
low-light, HDR - SLAM

eTraM [58] 2024 10 hours, 2M
annotations Static Vehicles, pedestrians,

micro-mobility
Daytime, night,

twilight 2M Intersections,
roadways, streets

LLE-VOS[59] 2024 70 video clips Dynamic Pedestrians, other
targets Normal, low-light 5600 Gym, classroom, zoo

REVD [60] 2024 21 sequences Dynamic Various scenes Varied 21 paired
seq. Video Deblurring

SDE [61] 2024 91 sequences Dynamic Indoor, outdoor
scenes Low-light, normal 30K+ pairs Low-Light

Enhancement

key tasks like object detection, tracking, and motion prediction. Additionally, DDD20 provides vehicle control signals
(steering, throttle, braking) and is ideal for evaluating frame-event fusion in driving assistance systems.

DSEC [53]. The DSEC (Dynamic and Static Environment for Cars) dataset is a large-scale dataset for autonomous
driving research, designed to test algorithms in both dynamic and static environments. It contains data from multiple
sensors, including event cameras, LiDAR, and RGB cameras, captured from vehicles moving through urban streets and
highways. The DSEC dataset is particularly useful for tasks like visual odometry, 3D reconstruction, and object tracking
in dynamic environments. Its multimodal nature allows for the development of algorithms that can handle challenges
of autonomous driving, such as dealing with fast-moving objects and varying light conditions.

TUM-VIE [54]. The TUM-VIE (TUM Visual-Inertial Evaluation) dataset is designed for evaluating VIO and SLAM
algorithms. It contains synchronized data from event cameras, monocular cameras and IMUs, recorded during various
motion scenarios, including both indoor and outdoor environments. This dataset is particularly useful for testing
algorithms that combine visual and inertial data to estimate the camera’s position and orientation in real time.

VECtor [55]. The VECtor Event Dataset is the first SLAM benchmark dataset captured using a fully synchronized
multi-sensor setup, including event-based and regular stereo cameras, RGB-D sensors, LiDAR, and IMU, with complete
6-DoF ground truth for diverse scenarios. It captures the full spectrum of motion dynamics and environmental conditions
while providing precise calibration, specifically designed to address challenges unique to dynamic vision sensors.

eTraM [58]. The eTraM (Event-based Traffic Monitoring) dataset a fully event-based traffic perception benchmark
captured using a high-resolution Prophesee EVK4 HD event camera. It features annotated traffic data with diverse
vehicles, pedestrians, and micro-mobility objects under challenging lighting and weather conditions, including high
glare, overexposure, underexposure, nighttime, twilight, and rainy days.

LLE-VOS [59]. The LLE-VOS (Low-Light Event-based Video Object Segmentation) dataset is designed for event-based
video object segmentation in low-light conditions, providing synchronized event and frame data with ground-truth
masks. It captures challenging scenarios including night-time and indoor scenes.

FE108 [57]. The FE108 dataset is a large-scale, frame-event-based resource for object tracking. It comprises 108
sequences with 21 object types under challenging conditions like low light, HDR, and fast motion. With high-frequency
ground truth for both domains, it is highly suitable for evaluating multi-modal tracking algorithms.
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1 Mpx Automotive Detection Dataset [56]. This dataset is the first large-scale, high-resolution benchmark for
automotive object detection. It provides over 14 hours of recordings with more than 25 million bounding box annotations
for cars, pedestrians, and two-wheelers, making it ideal for training robust detectors for autonomous driving.

REVD [60]. The Real-world Event Video Deblurring (REVD) dataset is the first real-world benchmark for its task. It
offers synchronized high-resolution blurred videos, sharp ground-truth counterparts, and event streams captured in
scenes with extreme motion blur, serving as a critical resource for video restoration algorithms.

SDE dataset [61]. The SDE dataset is a large-scale, real-world benchmark for low-light image enhancement. It
consists of over 30,000 spatially and temporally aligned image-event pairs captured in varied lighting conditions. This
precise alignment enables the development of robust enhancement techniques for real-world scenarios.

Event-based datasets provide essential benchmarks for robotics and autonomous driving (e.g., MVSEC, DSEC,
DDD20), SLAM/VIO (e.g., TUM-VIE, VECtor), and traffic monitoring (e.g., eTraM). They also support research in object
detection/tracking (e.g., 1 Mpx Automotive, FE108, DVS-Pedestrian) and image restoration under motion blur or low
light (e.g., REVD, SDE, LLE-VOS). By offering rich multimodal data, these datasets highlight the strengths of event
cameras in high-speed, low-light, and HDR scenarios, advancing beyond traditional vision systems.
2.7 Synthetic data generation: simulators and approaches
While deep learning has advanced event-based vision, progress depends on large, diverse datasets, yet collecting
dense ground truth for tasks like optical flow is costly [27]. Simulators address this by generating synthetic event
data with pixel-accurate annotations in controllable environments, enabling systematic training and evaluation. This
section reviews major simulation approaches, categorized as physics-based rendering, video-to-event conversion, neural
rendering, and AI-driven generation, as well as quality assessment methods (Tab. 5).

Physics-based rendering and simulation This approach typically involves rendering high-framerate video from
a 3D environment and then converting these frames to events based on a pixel model. A pioneering tool, ESIM [62],
synthesizes events by interpolating logarithmic intensity changes to provide “perfect” data with microsecond resolution.
For large-scale generation, frameworks like InteriorNet [63] create photorealistic indoor scenes with event streams and
corresponding multi-modal data (RGB-D, IMU, semantics). In contrast, some simpler methods just threshold frame
differences, a faster but less precise technique [64].

Video-to-event conversion To leverage existing video archives, video-to-event (V2E) converters transform standard
video into event streams. The v2e toolbox [65], for instance, implements a sophisticated pixel model that accounts for
non-ideal behaviors like bandwidth limits, threshold mismatch, and noise, yielding highly realistic DVS events. Other
robust tools, including the V2CE Toolbox [66] and the Prophesee Video to Event Simulator [67], also provide robust
methods for converting frame-based video into the event domain.

Neural rendering and AI-driven event generation More recently, neural rendering and generative AI have
emerged. Neural Radiance Fields (NeRFs) offer a new direction; EvDNeRF [68], the first dynamic NeRF trained on
events, can synthesize event streams of dynamic scenes from novel viewpoints. Pushing this further, generative AI
models like Text-to-Events [69] bypass intermediate frames entirely, using a latent diffusion model to generate event
data directly from text prompts, though currently limited to specific domains like gestures.

Differentiable simulators and quality assessment Recent research thrusts are differentiable simulation and
quality assessment. SENPI [70] exemplifies the former, offering a fully differentiable framework for end-to-end co-
optimization of sensor parameters and a network’s architecture. To address sim-to-real gap, Event Quality Score (EQS)
[71] provides a metric by comparing latent features from a network processing real versus synthetic data. The resulting
score correlates with real-world performance and can serve as a loss function to improve simulators.
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Table 5. Summary of Event Camera Simulators and Generation Methods

Simulator/Method Type Core Mechanism Key Features/Output Noteworthy Aspects/Limitations

ESIM Physics-based Interpolates log-intensity from rendered video to
trigger threshold-based events.

Event streams, intensity frames,
depth maps.

Foundational open-source tool. Generates ’perfect’
events but lacks realistic noise models.

InteriorNet Physics-based (Integrated) Renders large, photo-realistic indoor scenes and
converts the high-framerate video to events.

Event streams, RGB-D, IMU,
semantics, optical flow.

Mega-scale dataset with rich ground truth (RGB-D,
IMU) and realistic physics.

v2e Toolbox Video-to-Events Converts video to events using a detailed DVS
pixel model with various noise sources. Realistic DVS event streams. High realism, especially for low-light, by modeling

sensor non-idealities (noise, bandwidth).

V2CE Video-to-Events
(Learning-based)

Uses a 3D UNet to predict event voxels, then a
statistical model (LDATI) for continuous
timestamps.

High-fidelity, continuous event
streams.

Claims SOTA. Solves ’temporal layering’ problem
by generating continuous, non-discrete
timestamps.

EvDNeRF Neural Rendering Trains a dynamic NeRF directly on event data to
synthesize novel event streams.

Predicted event streams, intensity,
depth.

First dynamic NeRF for events; can render from
novel viewpoints. Training may be unstable.

Text-to-Events Generative AI Generates events directly from text prompts using
a latent diffusion model. Synthetic event frames. Bypasses intermediate video generation. Currently

limited to specific domains (e.g., gestures).

SENPI Differentiable Simulator Fully differentiable PyTorch library modeling the
entire event generation pipeline. High-fidelity pseudo-event tensors. Allows co-optimization of sensor parameters and

network architectures.

EQS Quality Assessment Metric Measures realism by comparing latent features
from a network processing real vs. synthetic data. A differentiable realism score.

Differentiable metric for raw events that correlates
with sim-to-real performance. Can be used as a
loss.

3 ABSTRACTION: EVENT REPRESENTATION

Event data is often processed and transformed into various representations to extract meaningful information (features)
for solving specific tasks. Here, we review popular representations of event data, which range from simple, hand-crafted
transformations to more elaborate methods, as shown inFig.5.

3.1 Raw events
Raw events offer high fidelity, retaining complete temporal and spatial information, making them ideal for event-driven
processing, especially in applications using SNNs. While raw events provide detailed and precise information, they
come with challenge of managing substantial data loads and ensuring proper alignment of events across time.

Individual Events. Raw events 𝑒𝑘 � (x𝑘 , 𝑡𝑘 , 𝑝𝑘 ) are utilized by event-by-event processing methods such as
probabilistic filters and Spiking Neural Networks (SNNs). These methods build additional information from past events
or external knowledge and fuse it with incoming events asynchronously to produce an output [72, 73].

Event Packet. The event set 𝐸 = {𝑒𝑘 }𝑁𝑒 retains precise timestamp and polarity information for each event. Selecting
the appropriate packet size𝑁𝑒 is crucial to meet the assumptions of the algorithm (e.g., constant motion speed throughout
packet’s duration), which varies depending on the task [74, 75]

3.2 Event frame (2D Grid)
Events within a spatio-temporal neighborhood are converted into a 2D grid—often by counting events or accumulating
polarity per pixel—forming an Event Frame compatible with standard image-based algorithms. While easy to implement,
this representation can lose temporal information, suffer from motion blur in dynamic scenes, struggle under HDR
conditions, and fail to fully exploit the sparsity of event data, reducing efficiency.

Histogram. This representation converts events into histograms, offering an activity-driven sample rate. Although
not fully aligned with the event-based paradigm, it has proven effective [76, 77]. Traditional 2D histograms discretize
events into bins, while the Activity-Aware Event Integration Module extends them with spatiotemporal operations,
capturing finer details and improving dynamic-scene performance, particularly in semantic segmentation [78].

Time Surface. A Time Surface (TS) is a 2D map where each pixel stores a single time value (e.g., the timestamp of the
last event at that pixel). Events are converted into an image whose "intensity" is a function of the motion history at that
location, with larger values corresponding to more recent motion. TSs explicitly expose the rich temporal information
of the events and can be updated asynchronously [79–81].

3.3 Spatio-temporal 3D grid representation
AVoxel Grid is a 3D space-time histogramwhere each voxel corresponds to a pixel and time interval, preserving temporal
information better than 2D projections. With polarity, it forms a discretized scalar field on the image plane, using
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Fig. 5. Event representations method (a) Raw event (b) 2D histogram (c) Time surface (d) Voxel grid (e) RGB picture.

accumulation or kernel distribution for sub-voxel accuracy [82–84]. This representation retains rich spatiotemporal
detail for precise event tracking but requires more memory and computation, posing challenges for real-time use.

3.4 Customized representation

Customized event representations address task-specific limitations of traditional methods by combining spatial, temporal,
or domain-specific features to boost efficiency and accuracy. For example, [85] employs adaptive filtering for motion
deblurring to preserve high-frequency details, while [86] introduces the 2D-1T Event Cloud Sequence (ECS), which
separates spatial and temporal components to retain sparsity and capture both geometry and motion, aiding recognition.

Task-specific designs improve performance by exploiting relevant features and domain knowledge, but their gener-
alizability across tasks remains limited. For example, the adaptive filtering representation in [85] is tightly coupled
with a generative model and an Extended Kalman Filter, making it powerful for dynamic tracking but hard to adapt to
recognition or reconstruction tasks that require spatially structured outputs. Similarly, the ECS representation [86] yields
compact embeddings suitable for classification but lacks the explicit geometric and kinematic detail needed for precise
tracking or mapping. Moreover, both are deeply embedded in their respective architectures, so transferring them to other
paradigms demands significant redesign and retraining. Consequently, while customized representations demonstrate
how tailoring to specific assumptions can achieve state-of-the-art performance, they also reveal the trade-off between
specialization and generalization. Future research toward more unified or transferable event representations, along
with standardized benchmarks for cross-task robustness, would be valuable for broadening applicability.

4 ALGORITHM: EVENT PROCESSING

4.1 Event-based denoising

Motivation. As event cameras see increasing use in high-speed, low-latency applications, effective denoising becomes
crucial for reliable vision tasks. These bio-inspired sensors detect brightness changes with high temporal precision
but are highly sensitive to noise, degrading event stream quality and affecting tasks like reconstruction and detection.
Noise arises from both external (e.g., ambient light changes) and internal sources (e.g., leakage currents), causing
spurious events known as background activity (BA), which wastes bandwidth and reduces accuracy. Over time, hot
pixels continuously emit false events, introducing hot noise. Unlike conventional cameras that suppress noise via image
integration, event cameras amplify it due to logarithmic encoding and differential sampling. This results in more BA,
missed events, timing noise, and redundant trailing events after edge arrivals, complicating robust denoising efforts.

Challenge. Event cameras face significant challenges in noise mitigation due to diverse noise sources, annotation
limitations, computational constraints, and non-uniform noise distributions. One major challenge lies in the diversity
of noise types intrinsic to event cameras: (i) BA noise, triggered by junction leakage currents or low-light conditions,
generates spurious events. (ii) Hot pixels, common during prolonged usage or high-speed scenarios, produce persistent
erroneous signals. (iii) Temporal noise introduces stochastic timing variations, while (iv) structural noise arises from edge
inconsistencies or redundant trailing events. Their distinct spatiotemporal and statistical characteristics complicate
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simultaneous mitigation. The lack of high-quality annotated datasets further limits supervised denoising methods, as
creating paired data is labor-intensive, and synthetic datasets suffer from domain gaps. Multi-modal fusion with frame
or IMU data helps, but struggles with extreme motion blur or lighting changes.

[87]
[88]

[89]

[90]

[91]

[92]

[93]
[94]

Fig. 6. Comparison of event-based denoising algorithms in compu-
tational cost vs. performance, all evaluated on the LED dataset.

Computational efficiency is another bottleneck,
many algorithms prioritize accuracy over latency,
making them unsuitable for power-constrained sys-
tems, especially in low-light conditions where noise
worsens. Moreover, the spatially and temporally non-
stationary nature of noise challenges traditional meth-
ods that assume uniform noise. For example, BA noise
often appears in localized bursts, while other noise
types vary over time. Robust solutions must handle
these irregularities for consistent performance.

Literature review. Event denoising has achieved
notable advancements through diverse methodolo-
gies, including statistical approaches, filtering-based
techniques, surface fitting and deep learning, signif-
icantly improving noise suppression in event-based
vision (Fig. 6). To ensure fair comparison among
these methods despite their diverse assumptions, we adopt the large-scale real-world LED dataset [94], which provides
paired noisy/clean events under controllable illumination and noise levels. All methods are evaluated using the same
metric denoising accuracy 𝐷𝐴 = 1

2 (
𝑇𝑃
𝐺𝑃

+ 𝑇𝑁
𝐺𝑁

), which decomposes into signal retention (SR) and noise removal (NR),
thus jointly capturing the two key aspects of denoising quality. As illustrated in Fig. 6, this unified setting enables an
objective and reproducible comparison of statistical, filtering-based, and deep learning strategies.

Statistical methods. Early techniques relied on statistical analysis to identify outliers by evaluating event density
in local spatio-temporal neighborhoods [95]. Delbruck et al. [96] pioneered density-based filtering, leveraging local
context to suppress noisy events. Subsequent efforts [89, 90] enhanced these techniques with optimized event storage
strategies to reduce computational complexity and improve processing efficiency. However, these approaches often
require manual parameter tuning to adapt to varying noise conditions, limiting their scalability and generalizability.

Filtering-based methods. To better exploit the temporal and asynchronous nature of event data, several filtering
algorithms have been developed. (i) Temporal filters [97] remove redundant events by leveraging temporal correlations.
(ii) Spatial filters [98] isolate motion-related events by analyzing pixel intensity changes. (iii) Spatio-temporal filters

[95, 99] combine both strategies to suppress background activity (BA) noise. For example, Liu et al. [100] showed that
integrating spatial and temporal filtering reduces BA noise while preserving critical motion events.

Surface fitting techniques. Surface fitting methods offer an alternative approach, particularly effective for smoothing
event data in continuous motion scenarios. Methods like EV-Gait [91] and the Guided Event Filter (GEF) [101] employ
local plane fitting , optical flow estimation, and image gradients for noise smoothing. The time surface (TS) method
[88, 97] transforming event streams into monotonically decreasing representations, effectively mitigates sparsity but
exhibits limited performance in low light or highly dynamic scenes.

Deep learning-based methods. Recent advances in deep learning have revolutionized event denoising, enabling
automated solutions by training on noisy-clean event pairs [102, 103]. Sparse feature learning (K-SVD [104], MLPF [90])
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Table 6. Comprehensive Comparison of event filtering and feature extraction methods

Method Advantages Disadvantages Applications

Frame-based methods [108, 109] High computational efficiency;
Low memory consumption;
Simple implementation

Poor accuracy in high-speed scenarios;
Limited temporal precision;
Loss of fine event details

Basic feature detection;
Initial event processing

Surface of Active Events-based methods
[110, 111]

High temporal accuracy;
Precise event timing preservation;

Good feature localization

High memory overhead;
Reduced processing efficiency;

Complex computational requirements

Temporal-spatial feature detection;
Optimization tasks.

Clustering-based methods [112, 113] Linear time complexity;
Efficient memory usage;
Fast stream processing

Accuracy depends on parameters;
Poor precision in complex scenes;

Unstable performance

Dense event processing;
Dynamic scene analysis

Geometric transform-based methods
[114–116]

High tracking accuracy;
Precise motion estimation;
Robust feature detection

Heavy computational load;
Low processing efficiency;
High resource consumption

Fast motion tracking;
Extreme illumination scenarios

Temporal filtering-based methods
[117, 118]

Fast processing speed;
Efficient memory utilization;
Good real-time performance

Accuracy affected by noise;
Precision loss in filtering;
Detail preservation issues

High temporal precision tasks;
Real-time processing;

Resource-constrained systems

Asynchronous methods [119–121] Low latency processing;
High temporal accuracy;
Efficient event handling

Complex implementation;
Resource intensive

Low-latency applications;
High-speed corner detection;
Noise-heavy environments

Hybrid methods [122–124] High detection accuracy;
Robust feature extraction;

Multi-layer filtering

Computationally heavy;
Complex parameter tuning

High-speed tasks;
Multi-feature scenarios

Neural networks-based methods
[117, 125–127]

High feature accuracy;
Tracks complex dynamics;

Biologically inspired

Training-intensive;
High computational demands;
Accuracy-speed tradeoffs

Complex dynamic environments;
Biological vision systems

Frame-event hybrid methods [128–130] High spatial-temporal accuracy;
Precise feature matching;

Robust performance

Complex design;
High computational cost;

Complex resource management

Robotics;
Precision tasks;

High-speed tracking

methods focus on sparse feature extraction and event probability estimation. EDnCNN [92] integrates frame and IMU
data to classify events as signal or noise. EventZoom [105] employs a U-Net architecture for efficient noise-to-noise
denoising, achieving superior performance in handling noisy event streams. AEDNet [93] processes raw DVS data
while preserving inherent spatio-temporal correlations. EDformer [106] introduces an event-by-event transformer
model, while EDmamba [107] leverages state space modeling to achieve efficient noise-aware spatiotemporal denoising.

4.2 Event-based filtering and feature extraction
Motivation. Unlike traditional frame-based cameras capturing images at fixed intervals, event cameras operate
asynchronously, producing sparse data only when significant brightness changes occur. This dynamic output demands
specialized filtering to isolate meaningful events for effective feature extraction. Event filtering highlights important
scene dynamics—like motion and edges—while removing irrelevant or redundant data. This enhances efficiency and
accuracy in tasks such as object detection, motion tracking, and scene reconstruction, especially in fast-moving or
rapidly changing lighting conditions. By reducing noise and preserving critical features, filtering supports robust,
low-latency processing essential for real-time applications.

Challenge. The asynchronous nature of event data poses key challenges for filtering, as there’s no universal definition
of a “significant” event. Variations in event frequency and timing complicate maintaining temporal coherence, which
is vital for accurate motion representation during feature extraction. Balancing filtering complexity with real-time
processing is also difficult—advanced methods may boost accuracy but risk adding latency. Parameter tuning is another
challenge, since optimal settings vary with environmental conditions and must adapt to dynamic, unpredictable scenes.
This need for adaptability makes robust filtering crucial for reliable event-based vision. Overcoming these issues is
essential to enhance feature extraction and ensure consistent real-world performance.

Literature review. Event-based feature extraction has progressed from adapting frame-based methods to developing
specialized event-driven approaches (Tab. 6). Early work modified traditional techniques, such as applying Harris
corner detection [108] to event accumulation frames. A major advance was the Surface of Active Events (SAE) [110],
which records the timestamp of the latest event per pixel, preserving temporal precision while improving efficiency and
feature extraction performance.

Feature extraction methods have advanced in both accuracy and efficiency. eFAST [119] shifted from gradient-based to
faster comparison-based operations tailored for event data, while Arc* [111] improved detection speed and repeatability
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through refined SAE filtering. Hybrid methods like FA-Harris [122] and TLF-Harris [123] balanced efficiency and
robustness via candidate selection and multi-layer filtering. FEAST [125] introduced unsupervised extraction with
spiking neuron-like units, and ROT-Harris [124] used tree-based processing to surpass traditional 2D approaches.
Together, these works highlight a shift toward practical, scalable implementations.

Parallel to advancements in feature extraction, event filtering has emerged as a critical preprocessing step for robust
feature extraction, leveraging the asynchronous and high-resolution temporal data of event cameras. Temporal filtering-
based methods have significantly improved data quality and computational efficiency by prioritizing meaningful scene
changes [117, 118]. Clustering-based methods, such as eCDT [112], dynamically group events to represent dense streams
compactly while minimizing complexity. However, such methods often face challenges in maintaining robustness under
varying conditions due to sensitivity to parameter configurations [113].

Parametric filtering has further advanced event-based vision by employing geometric transformations to filter
irrelevant data. For instance, EKLT [114] aligns events to improve feature extraction, while curve-fitting techniques
construct smooth spatio-temporal trajectories [115], excelling in scenarios with rapid motion or extreme illumina-
tion. Asynchronous methods, such as HASTE [120], process individual events in real time using hypothesis-driven
transformations, and proximity-based trackers continuously refine feature locations, effectively suppressing noise and
supporting low-latency applications [121].

Integrating filtering with feature extraction has greatly improved the robustness and efficiency of event-based vision
systems. For instance, combining filters with classical algorithms like Harris or FAST enables reliable corner detection,
while shape detection methods using ICP and Hough transforms enhance performance in high-speed, high-dynamic-
range settings [128]. Modern tracking approaches also exploit the low latency and high temporal resolution of event
cameras by incorporating probabilistic associations and spatio-temporal constraints, resulting in more stable features
and improved tracking accuracy [129, 130].

Neural network-based filtering integrates asynchronous event processing with biologically inspired architectures.
Pulse-based neural networks [126] exploit the high temporal resolution of event data for precise feature tracking,
showing strong potential in dynamic environments. Yet, current models still fall short of the detection accuracy achieved
by convolutional networks [117, 127]. Ongoing efforts to unify filtering, feature extraction, and tracking are pushing
event-based vision toward broader applicability while preserving efficiency and robustness in real-world scenarios.

4.3 Event-based matching

Motivation. Matching involves identifying corresponding features between event streams captured at different times
or viewpoints, forming the basis for tasks like visual odometry, video interpolation, and mobile sensing. Event cameras,
unlike RGB cameras that operate at fixed intervals, trigger only on brightness changes, making them ideal for dynamic
scenes. They capture edges and textures efficiently while avoiding redundant data. The precise temporal information
in event data also enables accurate motion inference. By mitigating issues like motion blur and low frame rates
common in traditional cameras, event cameras offer distinct advantages for matching tasks—even with single-modal
data—demonstrating strong performance in high-frequency, fast-changing environments.

Challenge. Event-based matching faces major challenges due to the sparsity of events in pixel space and their
uneven temporal distribution, which hinder robust feature extraction—especially in low-light or static scenes. This calls
for specialized methods adapted to event camera properties. Moreover, the ultra-high temporal resolution produces
massive data volumes, raising computational costs. Achieving real-time performance in resource-limited settings thus
requires algorithms that balance efficiency and accuracy, minimizing latency while ensuring reliability in dynamic env..
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Table 7. Event-based Matching Algorithm Comparison

Algorithm Sample Input Advantages Disadvantages

Local feature matching
[131–140]

Optical Flow
Feature descriptor: SIFT/SURF/ORB Batch Low latency, noise resistance

Low computational resource

Difficult to handle global motion
Difficult to handle repeat texture
Need further extraction method

Optimization-based matching
[141–143]

Contrast maximization
Levenberg-Marquardt
Graph optimization

Batch/Asynchronous
Global consistency

Higher accuracy after iterations
Detailed design of optimizer

Higher computational complexity
Higher time latency
Hard to converge

Sensitive to initial values

Neural network-based matching
[144–148]

CNN
Batch/Asynchronous

Adaptive learning
Less manual intervention

Efficient inference

Large amounts of training data
Need parameter tuning

Poor generalization ability
SNN
GNN

Literature review. In visual data processing, matching algorithms are essential for motion estimation, visual
odometry, and feature tracking. They fall into three main categories—local feature, optimization-based, and deep
learning-based matching—each with distinct strengths and limitations (Tab. 7).

Local feature matching methods. These methods focus on detecting and associating local features within visual data
[149]. Techniques such as optical flow [131, 132] and descriptors like SIFT [135], SURF [136], and ORB [137] exemplify
this approach. They offer low latency, robustness to noise, and low computational demands, making them well-suited
for mobile, autonomous, and robotic applications [139, 140]. However, local feature matching faces challenges with
event streams, especially under large global motion, repetitive textures, or heavy reliance on specific feature extractors
[150]. Its performance also declines in scenes with sparse features or dramatic changes, underscoring the need for more
advanced and robust techniques.

Optimization-based matching methods. These methods aim to ensure global consistency by solving optimization
problems to align event data or trajectories. Techniques such as contrast maximization [141–143], the Levenberg-
Marquardt algorithm, and graph-based optimization are widely used. They offer high flexibility and accuracy, supporting
both batch and asynchronous processing, which makes them valuable in event camera applications. However, these
approaches are computationally demanding and sensitive to initial conditions—poor initialization can lead to local
optima or non-convergence. Their high memory and processing requirements also limit real-time usability, especially
for large-scale data. Achieving a balance between efficiency and accuracy remains a core challenge.

Deep learning-based matching methods. These methods mark a transformative shift by employing CNNs [146], SNNs
[144, 145], and GNNs [148] to automatically learn representations and matching strategies, surpassing handcrafted
descriptors in accuracy. GNNs are well-suited to the asynchronous nature of event streams and excel in high-speed,
dynamic environments. However, these models are computationally demanding, rely on large annotated datasets, and
struggle to generalize, while training remains time-consuming and requires careful hyperparameter tuning.

Selecting the most suitable matching algorithm depends on the specific task requirements, including computational
constraints, real-time processing needs, data characteristics, and scene complexity. As technology advances, these
algorithms are likely to evolve and converge, enabling the development of more versatile and robust visual matching
techniques capable of addressing a broader spectrum of applications.

4.4 Event-based mapping

Motivation Building on event matching, asynchronous event streams from different viewpoints can be fused across
poses to incrementally reconstruct a dense 3D map. Event-based sensing leverages spatial sparsity and high temporal
resolution, reducing computation by focusing on regions of change and minimizing motion blur to preserve edges
during fast motion. These properties enable real-time, efficient, and robust mapping in dynamic environments.

Challenge. Using cameras—including event cameras—for mapping and depth estimation is feasible but challenging.
Monocular cameras lack direct depth information, requiring techniques like multi-frame perspective changes or fusion
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Table 8. Comparison of different mapping methods.

Types of Mapping Methods Advantages Disadvantages or Challenges

Frame-based mapping[151–156]
✓ Improves the accuracy of depth estimation
✓ Enhances the quality of map construction
✓ Lower latency and computation cost

✗ Requires measuring and updating depth information
between current and initial detection frames, potentially
increasing computational load

Filter-based mapping [157–160] ✓ High robustness, suitable for rapidly changing environments
✓ Dynamically adjusts the system’s map representation

✗ Requires a large number of parameters to represent camera
poses, potentially increasing computational complexity

Continuous-time mapping
[161–163]

✓ Reduces parameter complexity
✓ Improves mapping accuracy and efficiency
✓ Simultaneously updates camera poses and 3D landmarks

✗ Requires handling continuous curve interpolation and
optimization problems
✗ Increasing computational difficulty
✗ High latency due to frequent states update

Spatio-temporal Consistency[164]
✓ Improves the accuracy of map construction
✓ Optimizes motion parameters

✗ Requires iteratively searching for the closest points and
applying a pruned ICP algorithm
✗ High computational cost and latency

with auxiliary sensors (e.g., IMUs) to infer depth. Stereo event camera setups can estimate depth more directly through
disparity. However, event cameras’ high temporal resolution leads to significant computational demands, as processing
their continuous asynchronous data in real time is resource-intensive. Additionally, aligning event data with other
sensor modalities complicates feature extraction and synchronization calibration. These challenges intensify in dynamic
environments, where maintaining sensor consistency is vital for accurate depth estimation.

Literature review. Mapping plays a fundamental role in constructing a 3D representation of the environment based
on visual features captured by cameras. With advancements in event-based vision, event cameras have become an
increasingly valuable source of information in visual simultaneous localization and mapping, offering high-frequency,
asynchronous data well-suited for real-time processing in dynamic scenes. Various event-based mapping approaches
have been proposed, each exhibiting distinct characteristics and advantages Tab. 8.

Frame-based mapping methods. Frame-based mapping methods often use event-derived 2D representations with
depth filters to iteratively refine scene depth via feature triangulation. For example, [153] estimates poses relative to
planar structures by minimizing reprojection errors, while [155] adopts the SVO algorithm [156] for pose estimation
from event feature correspondences. These methods typically model depth with Gaussian–uniform filters, updating
estimates from feature comparisons guided by poses. Additionally, [152] improves mapping by solving pose estimation
as a least-squares problem on 2D–3D line constraints.

Filter-based mapping methods. Filter-based mapping techniques address the asynchronous nature of event data by
continuously updating maps during camera tracking. Line-based vSLAM refines maps by measuring distances between
incoming events and reprojected 3D lines, generating point cloud reconstructions. These methods often use the Hough
transform to extract 3D line features, leveraging spatial correlations for robustness in dynamic scenes. For example,
[157] estimates poses via distances between back-projected event rays and planar points, while [160] improves precision
with a probabilistic measurement function on planar surfaces. More recent strategies, such as [158], update filter states
by evaluating event-to-line distances, often combining EMVS [159] with Hough-based line extraction to strengthen
event-line associations and enhance spatial accuracy.

Continuous-Time mapping methods. To reduce the high parameter count in filter-based discrete pose representations,
continuous-time mapping replaces discrete poses with smooth trajectory models such as B-splines or Gaussian processes,
enabling interpolation from local control states. This lowers complexity and supports joint optimization of poses and
landmarks, improving accuracy and efficiency. For example, [161] employs B-splines, while [162] use Gaussian process
motion models to interpolate poses at arbitrary timestamps. [162] further integrates incremental SfM for consistent
refinement of control states and landmarks, and [164] introduces a spatio-temporal constraint based on equal-time
event pairs to enhance rotational accuracy. In practice, these methods iteratively establish correspondences and apply
pruned ICP for spatial consistency, yielding more precise event-based maps.
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5 ACCELERATION

Event-based sensing generates data only when pixel intensity changes, drastically reducing redundancy and offering
efficiency, low power, and minimal latency, which is well-suited for high-speed, energy-constrained applications.
With growing demand on mobile and edge platforms such as drones, vehicles, and wearables, real-time and efficient
processing is critical but remains challenging under limited resources. Balancing accuracy and efficiency thus becomes
central for deployment. To address this, optimized hardware accelerators and specialized software must exploit event
sparsity to cut computation while preserving accuracy (Fig.7, Fig.8), enabling real-time event-based vision on mobile
devices for advanced autonomous applications.

5.1 Hardware acceleration

Motivation. Event-based vision transforms visual processing by generating data only from scene changes, achieving
sparsity, high temporal resolution, and low latency—ideal for real-time, power-limited applications. Yet, conventional
processors built for dense synchronous data struggle with sparse, asynchronous streams, making specialized hardware
essential. Hardware accelerators bridge raw events to high-level tasks like detection, tracking, and reconstruction by
exploiting sparsity and parallelism to cut redundancy, streamline data flow, and support massive parallel processing.
This enables precise, low-latency, and energy-efficient event-based systems ready for practical deployment.

Challenge. Traditional CPUs, constrained by sequential execution, struggle to process sparse, asynchronous event
streams in real time, often failing to meet the low-latency, high-throughput demands of tasks like detection and tracking
on resource-limited platforms. GPUs, though powerful for dense parallel workloads, are optimized for structured image
data; when applied to irregular event streams, they suffer from poor resource utilization, higher latency, and increased
power draw. In contrast, FPGAs offer a reconfigurable, massively parallel architecture that can be tailored to the unique
characteristics of event data. Through custom dataflow designs, sparse convolutions, and asynchronous pipelines,
they deliver low-latency, energy-efficient performance without relying on dense matrix operations. Their fine-grained
hardware control and inherent parallelism make them especially well-suited for mobile and embedded platforms, where
efficiency and performance must coexist.

Literature review. Recent research on hardware acceleration for event-based vision can be broadly categorized into
three main approaches: neuromorphic computing, event-driven deep neural network (DNN) acceleration, and hardware
optimization techniques aimed at enhancing efficiency and reducing power consumption.

Neuromorphic computing for event-based vision. Neuromorphic computing, inspired by the brain’s dynamic processing,
mimics biological neurons and synapses to enable efficient event-driven computation. SNNs typically run on custom
neuromorphic chips for low-power, high-efficiency processing. Notable devices include BrainScales [165], Spinnaker
[166], Neurogrid [167], TrueNorth [168], Darwin [169], and more recently, Loihi [170], Tianjic [171], and Speck [172]. A
key challenge is improving energy efficiency via high-level brain-inspired mechanisms. Among these, the asynchronous
chip Speck [172] stands out as a sensing-computing SoC that fully leverages sparse, event-driven processing. Operating at
ultra-low power (0.70 mW in real-time), Speck demonstrates neuromorphic computing’s promise for power-constrained
mobile and edge systems.

Event-driven DNN acceleration. Neuromorphic computing provides a bio-inspired paradigm for event-driven process-
ing, while another crucial research direction focuses on hardware acceleration tailored to event-based deep learning
models. Unlike conventional GPUs, which fail to fully exploit the sparsity of event data, specialized architectures have
been developed to achieve higher efficiency. (𝑖) Sparse dataflow architectures: The combinable dynamic sparse dataflow
architecture (ESDA) [173] realizes a configurable sparse dataflow model on FPGAs. By employing a unified sparse
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token–feature interface to interconnect parameterizable network modules, ESDA reduces both latency and power
consumption during event-based DNN inference, making it well-suited for edge deployment. (𝑖𝑖) Optimized fusion for
event-based vision: EventBoost [174] accelerates event–image fusion through a dedicated hardware accelerator on the
Zynq SoC platform. By optimizing fusion workloads in real time, EventBoost mitigates inefficiencies typical of CPU-
and GPU-based processing, significantly boosting performance for event-driven visual tasks.
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Fig. 7. Power consumption of different platforms(𝑊 ) vs. La-
tency(Real Computing time)(𝑚𝑠)

Hardware optimization for efficient event processing.

Beyond neuromorphic computing and event-driven
DNNs, hardware acceleration is essential for unlock-
ing the full potential of event-based vision, partic-
ularly in power-constrained and efficiency-critical
scenarios. One optimization strategy aims to reduce
power consumption directly at the sensor interface.
For example, [182] proposes a dedicated on-chip DVS
interface that aggregates asynchronous event streams
into ternary event frames, substantially lowering the
energy demands of subsequent processing stages.

In addition to such front-end innovations, a vari-
ety of FPGA-based accelerators have been explored
to enhance efficiency across the entire event-vision
pipeline by exploiting the inherent parallelism of event data. For instance, [176] presents a reconfigurable processing
element architecture that integrates both a median filter core and an AI accelerator core for CNN inference within
a system-on-chip (SoC). Leveraging Reconfigurable Multiple Constant Multiplication (RMCM) for efficient resource
sharing, this design achieves an energy consumption of only 593.4 nJ per inference under 65 nm technology, significantly
reducing computational cost. Similarly, [183] develops a complete event-driven optical flow camera system with FPGA-
based acceleration for key modules such as event-driven corner detection and adaptive block matching optical flow.
Expanding toward heterogeneous architectures, [184] demonstrates an FPGA/ARM platform for Event-based Monocular
Multi-View Stereo (EMVS), where algorithm restructuring and mixed-precision quantization boost throughput while
minimizing memory footprint. Finally, [174] proposes a Zynq SoC–based event–vision fusion accelerator that employs
hardware–software co-design to distribute tasks between FPGA and CPU, maximizing parallelism and efficiency in
computationally demanding fusion algorithms.

Application-specific hardware acceleration design. The development of specialized hardware architectures tailored to
accelerate sThe development of specialized hardware architectures tailored to specific tasks has become a central focus
in event-based vision research. By optimizing hardware resources for domain applications, these solutions achieve
substantial performance gains. For instance, [176] introduces an energy-efficient processor-on-chip for hand gesture
recognition. A key driver is aerial robotics, where stringent constraints on size, weight, and power demand highly
optimized systems. [39] presents FPGA-based hardware–software co-designs that exploit FPGA reconfigurability to
implement efficient pipelines for drone tasks such as navigation and obstacle avoidance. Complementarily, [185]
demonstrates a neuromorphic approach using Intel Loihi, where event data feed directly into SNNs for end-to-end drone
control, achieving high responsiveness with low power. These directions highlight the synergy between specialized
hardware and event-based vision. As edge applications—such as autonomous driving, robotics, and AR—demand
low-power, real-time performance, domain-optimized accelerators will be pivotal for practical deployment.
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Fig. 8. Specific hardware and software design for acceleration.

A key consideration in hardware acceleration is the trade-off between accuracy and computational latency. Hardware-
specific accelerators often reduce latency substantially by exploiting task-specific parallelism and sparse dataflow, but
this comes at the cost of reduced architectural flexibility and higher development overhead. Recent case studies illustrate
this balance clearly. For instance, EventBoost [174] employs a software-hardware co-design on a Zynq SoC to accelerate
event-visual fusion for UAV localization, achieving a 24.33% improvement in accuracy compared to state-of-the-art
systems while maintaining only 30ms end-to-end latency, therebymeeting real-time constraints on resource-constrained
platforms. Similarly, BioDrone [186] integrates an FPGA-based processing pipeline for autonomous drone navigation.
Experimental results show that the FPGA accelerator reduces per-frame processing latency from nearly 20 ms on
CPU to 2.2 ms, a nearly 10× speed-up, while sustaining almost identical perception accuracy (within 1–2% deviation)
compared to CPU baselines. These studies demonstrate the fundamental trade-off in hardware-specific acceleration:
latency can be drastically reduced without significant accuracy loss, but achieving this requires tight co-design between
algorithms and hardware. As a result, while FPGA and ASIC solutions provide a practical pathway toward real-time,
power-efficient event-based vision deployment, their specialized nature may limit general applicability across tasks.

5.2 Software acceleration

Motivation. Deploying event cameras on mobile platforms requires software acceleration to handle sparse, asynchro-
nous data in real time under strict resource limits. By transforming raw events into structured representations through
clustering, compression, or sparse matrix operations, software acceleration streamlines denoising, filtering, feature
extraction, and inference. Exploiting sparsity, reducing redundancy, and applying techniques like adaptive sampling
and dynamic memory management are key to achieving energy-efficient, real-world mobile applications.

Challenge. Effective software acceleration for event cameras on mobile platforms faces several challenges. First,
sparse and asynchronous nature of event data makes dense-input algorithms inefficient, requiring specialized designs.
Second, integration with deep learning frameworks is nontrivial, as most models are tailored for frame-based inputs.
Third, limited on-device resources demand optimized memory management and throughput to balance speed and power.
Finally, current benchmarks overlook unique characteristics of event data, calling for dedicated evaluation metrics.
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Literature review. In event-based vision systems, software acceleration is essential for improving the efficiency and
performance of the event processing pipeline. By optimizing key stages of event handling, researchers can significantly
enhance computational speed, reduce latency, and better utilize limited resources. Software acceleration techniques
target various pipeline stages, such as event sampling, preprocessing, feature extraction, and event analysis. Each stage
presents distinct challenges, and numerous specialized acceleration methods have been developed to address them:

Event sampling. Event cameras capture raw data with precise timestamps and spatial locations. Unlike uniform
sampling, adaptive sampling prioritizes significant scene changes to improve data efficiency. The key challenge is
balancing temporal resolution with sparsity to prevent information loss or redundancy. [72] addresses this by introducing
a recurrent convolutional SNN-based adaptive sampling module that dynamically adjusts rates based on spatio-temporal
event patterns, enhancing overall efficiency.

Event pre-processing. Events need to be denoised, filtered, and formatted to improve subsequent processing. Common
challenges include false positives and inefficient filtering. Enhanced filtering algorithms, such as adaptive median filters,
can retain important features while reducing computational overhead. A lightweight, hardware-friendly neural network
architecture, 2-D CNN, is introduced in [176] for DVS gesture recognition, using a customized median filter to enhance
signal-to-noise ratio and reduce hardware complexity.

Feature extraction. Useful features, including spatial, temporal, and frequency features, are extracted from prepro-
cessed data. Traditional techniques may not effectively capture event data’s unique properties. Software acceleration,
particularly through deep learning models tailored for sparse data, can optimize feature extraction while reducing
processing time. The FARSE-CNN model, proposed in [187], integrates sparse convolutional and asynchronous LSTM
modules for efficient event data processing. [188] introduces SWformer, an attention-free architecture leveraging sparse
wavelet transforms to capture high-frequency patterns, resulting in improved energy efficiency and performance.

Event analysis. This step involves pattern recognition, classification, or regression, commonly for tasks like object
detection or tracking. The sparsity of event data can lead to high computational costs. Optimized CNNs and SNNs can
enhance the efficiency and effectiveness of analysis. A fast linear solver for camera motion restoration, developed in
[189], addresses geometric problems and adapts to sudden motion changes, providing a robust solution for event data.

Moreover, existing methods improve event processing by optimizing event representations, integrating geometric
and probabilistic models, and employing deep learning techniques. They also leverage the asynchronous and sparse
characteristics of event data to accelerate computation without sacrificing accuracy.

Efficient event data representation. Efficient event data representation methods convert sparse, asynchronous event
streams into structured formats for effective processing with reduced overhead. Recent approaches include event
stacking [190], Temporal Activity Focus (TAF) [191], and HyperHistogram (HH) [192]. TAF adaptively adjusts time
window length and resolution based on spatial and polarity cues, enhancing flexibility. HH builds multiple histograms
from event polarity and temporal statistics, integrating them into 3D tensors to preserve fine-grained details.

Geometric models-based methods. Geometric models leverage spatial relationships within scenes to improve the
performance of event-based visual algorithms. By integrating geometric constraints from event data, these models
reduce error accumulation, enhancing both accuracy and computational efficiency. Recent progress has been notable in
event-based visual odometry [164], motion estimation [189, 193–196], and time-to-collision estimation [197].

Probabilistic models-based methods. Probabilistic models offer a principled way to represent data and quantify
uncertainty, making them well-suited for the noisy, asynchronous nature of event streams. By leveraging probabilistic
inference and optimization, they improve both robustness and accuracy in event-based vision. Recent studies demonstrate
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their effectiveness in object classification [198], where class likelihoods are directly maximized from event data, and in
optical flow estimation [199], where noise modeling and belief propagation enhance precision.

Deep learning-based methods. Deep learning has greatly advanced event-based vision by extracting complex spatio-
temporal patterns for accurate prediction and decision-making. Recent efforts focus on efficiency, such as lightweight
networks and sparse Transformers [200] for object detection, and deep models for dynamic obstacle avoidance [201]
and tracking [202]. Advanced methods like GCNs and cross-representation distillation [203] further improve scene
understanding, while point cloud-based networks enhance pose relocalization [132], and unified implicit neural
representations support rolling shutter image restoration [204].

A promising direction lies in lightweight neural architectures tailored to the sparse and asynchronous nature of event
streams. Rather than compressing conventional models, these approaches co-design network structures and learning
principles with the sensing modality itself. IDNet [144] replaces expensive 4D correlation volumes with an iterative
motion-compensation loop, where a lightweight ConvGRU progressively refines residual flow, achieving competitive
accuracy with far fewer parameters and memory. FARSE-CNN [187] proposes a fully asynchronous recurrent sparse-
CNN, incorporating spatio-temporal compression modules to learn hierarchical features directly from events, yielding
state-of-the-art efficiency at low computational cost. Ultralight Polarity-Split SNN [205] leverages polarity-split encoding
and a learnable spatio-temporal loss for event-stream super-resolution, providing low-latency inference with minimal
model size and enabling on-sensor deployment.

Asynchronous and sparse computation-based acceleration. Asynchronous and sparse computation aligns with event
cameras’ data characteristics by updating only when changes occur, selectively processing active regions. This reduces
computational cost and boosts efficiency. Typical approaches focus on pixel brightness changes or region-specific features.
Recent advances include sparse convolutional networks for asynchronous streams [206], graph-based frameworks
[207], and local shift operations for optimized event handling [208].

6 APPLICATION: MOBILE PLATFORM-BASED TASK

This section explores the various tasks associated with mobile platforms, emphasizing the use of event cameras and
other sensing technologies to improve performance in dynamic environments. These tasks are categorized into intrinsic
sensing, external sensing, and event-based SLAM, each offering distinct applications and advantages, as shown in Fig.9.

6.1 Intrinsic sensing

Vision odometry. Event-based visual odometry exploits asynchronous event streams to estimate motion with higher
precision and lower computational cost than frame-based methods [209]. Early work focused on direct motion extraction,
such as angular velocity estimation via contrast maximization on event edges [210] and improved attitude estimation
under high rotation using enhanced aggregation functions [211]. More advanced systems integrate complementary
modalities: [212] incorporates depth for robust odometry in challenging conditions, while first event-based stereo visual-
inertial system [213] fuses stereo events, standard frames, and IMUs through spatiotemporal correlation and motion
compensation, significantly boosting accuracy in dynamic scenes. Although these methods suggest proof-of-concept
readiness, their large-scale deployment in unstructured real-world environments remains limited. Advanced methods
have taken a step forward by attempting GPS-denied navigation for unmanned systems, comparing real-time terrain
fingerprints generated from event camera outputs with pre-stored fingerprints derived from satellite imagery [214].

Optical flow. Event cameras are highly suitable for optical flow estimation, supporting real-time processing in
HDR environments critical for motion tracking. Existing methods fall into two main categories: (i) Deep learning-based
approaches, which leverage neural networks to infer flow from event streams—for example, a hierarchical SNN for
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global motion perception [215], though they often require event-to-frame preprocessing. (ii) Traditional computer vision

approaches, which exploit the spatio-temporal structure of event data. These include normal flow estimation fused with
IMU data for high-dynamic velocity estimation [216] and contrast maximization methods with tailored reward functions
[143]. Event-based optical flow has shown promise in drone status estimation, and deep learning methods perform
well in lab settings; however, their robustness to sensor noise and illumination variability in real-world deployments
remains an open research problem.
6.2 External sensing

Mapping

SegmentationOptical Flow
3D 

Reconstruction
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Optical Flow Vision Odometry
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Detection & Tracking
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Fig. 9. Event camera-based sensing tasks on mobile platforms

Mapping. Event cameras improve 3D
map construction by capturing rapid en-
vironmental changes with high tempo-
ral resolution. Feature-based methods,
such as extracting points or lines, re-
main common—for instance, [217] de-
tects straight lines in railway settings
and combines them with odometry for
infrastructure mapping. However, these
methods depend on stable, repeatable fea-
tures, which may be unreliable in sparse
or occluded scenes. To address this, re-
cent works adopt alternative strategies:
BeNeRF [218] reconstructs NeRFs from a
single blurred image and an event stream, reducing reliance on extensive pose data, while AsynHDR [219] leverages
LCD modulation for HDR imaging, enriching scene information for more accurate 3D reconstruction. In summary,
feature-based and neural approaches show promise for 3D reconstruction in dynamic environments, but many rely
on assumptions about feature stability or controlled settings, indicating they are largely at the proof-of-concept stage
rather than fully deployment-ready.

Object detection & tracking. The high temporal resolution and low latency of event cameras make them particularly
well-suited for precise object detection and tracking in dynamic environments [32, 220]. Existing methods can be
broadly categorized into two groups: (i) Event stream-based detection and tracking methods. These approaches primarily
leverage the spatio-temporal characteristics of event data. For example, [221] proposes a stereo event-based tracking
algorithm that addresses occlusion by combining 3D reconstruction with cluster tracking. [222] proposes an end-to-end
event cloud-based object tracking framework using density-insensitive key-event sampling, graph-based embedding,
and motion-aware likelihood prediction. EVPropNet [223] tracks drone propellers using event data, while EDOPT
[224] performs six-degree-of-freedom object pose tracking solely with event cameras. (ii) Fusion-based detection and

tracking methods. These methods combine event data with additional sensors to enhance accuracy and robustness.
[225] proposes a two-stage gaze estimation framework using event and frame data with anchor-based state shifts and
denoising distillation. [226] explores object tracking from RGB and event data by leveraging a pre-trained ViT with mask
modeling and orthogonal high-rank loss to enhance inter-modal token interaction. [227] proposes a motion-adaptive
event sampling and bidirectional-enhanced fusion framework to align event and image data for more accurate object
tracking. High-frequency drone localization using mmWave radar and event streams is demonstrated in [5], and [228]
integrates depth camera data with events for obstacle tracking. In summary, some event-only methods and fusion-based
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approaches demonstrate impressive performance in dynamic and high-speed conditions. Fusion-based systems that
combine RGB, depth, or radar data appear closest to real-world deployment, especially in drone navigation and obstacle
tracking. In the industry, Meituan has explored combining event cameras with mmWave radar for UAV localization [5].
Tobii, a global leader in eye-tracking, together with Meta, has investigated event-camera-based gaze tracking [229, 230].
Meanwhile, SAAZ Micro Inc. and Neurobus have applied event cameras to drone detection [231, 232].

Optical flow. Event cameras excel in external optical flow estimation, enabling robust motion tracking of dynamic
objects in high-speed scenarios [233, 234]. Unlike internal perception, which focuses on self-motion estimation, external
optical flow targets the movement of surrounding objects, supporting applications such as object capture and robotic
control. Existing approaches can be broadly categorized into multimodal fusion, contrast maximization, and event-
specific dense flow estimation. For instance, RPEFlow [235] enhances accuracy by fusing events with RGB images and
point clouds via cross-modal attention. Contrast maximization (CM)-based methods [236, 237] provide a principled
formulation and achieve state-of-the-art results with innovations like multi-reference focus loss and time-aware flow
modeling. Complementarily, TEGBP [199] introduces an efficient framework for deriving dense optical flow directly
from sparse event data. These developments highlight the growing versatility of event cameras for external motion
analysis across diverse environments. Despite these advances, most methods remain at the proof-of-concept stage,
validated primarily in controlled laboratory settings. It is worth noting that this technology shows significant potential
for applications such as fall detection, crowd detection and tracking, and traffic data acquisition [238].

Classification. Event cameras’ ability to capture rapid changes in lighting and motion greatly improves image
classification [239, 240]. Event-based classification methods leverage subtle motion and illumination variations with
specialized models. For instance, [241] uses graph convolutional networks on event-derived graph structures for
classification, while [242] applies deep learning to recognize individuals from gait patterns. Event cameras also aid
microscopic object classification using SNNs [243], and [244] captures facial micro-expressions for emotion recognition,
showcasing event data’s sensitivity to subtle cues. These methods have been validated on specific datasets. While
promising, their generalization to large-scale, unconstrained environments remains a challenge. It is worth noting that
such approaches hold significant potential for applications in medical diagnostics [245].

3D Reconstruction. Event cameras enable precise 3D reconstruction in dynamic scenes by leveraging high temporal
resolution and sparse data. Real-time monocular reconstruction is shown in [246], while [247] used stereo event cameras
for semi-dense 3D reconstruction, balancing accuracy and efficiency. Combining structured light with event cameras
allowed high-speed 3D scanning with less data redundancy [248]. A polarization-based method in [249] maintains
precision even at low event rates. Specific applications include real-time 3D hand gesture estimation [250], 3D human
pose and shape estimation [251], and non-rigid object reconstruction handling complex motions [252]. In summary,
real-time monocular and semi-dense stereo reconstructions have been achieved in controlled scenarios. Non-rigid
object reconstruction and human pose estimation highlight potential, but deployment in complex scenes is still limited.

Segmentation. Event cameras improve image segmentation performance by enabling accurate and efficient seg-
mentation in rapidly changing environments [253, 254]. Segmentation approaches based on event data can be divided
into: (i) Motion-based segmentation methods leverage the motion information captured by event cameras to segment
scenes. For example, [255] proposes a motion compensation-based iterative optimization algorithm that segments
scenes into independently moving objects, effectively exploiting the event camera’s high sensitivity to motion changes
for dynamic target segmentation. (ii) Deep learning-based semantic segmentation methods utilize deep neural networks
for feature extraction and semantic understanding. Existing works in this category explore how to effectively combine
event data with RGB frames or adapt pre-trained segmentation models to the event domain. For instance, CMDA [256]
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exploits HDR of event cameras to complement the limited dynamic range of frame cameras, achieving robust semantic
segmentation in challenging nighttime scenes. More recently, SAM-Event-Adapter [257] introduces a lightweight
adapter to bridge event data with the Segment Anything Model (SAM), enabling zero-shot semantic segmentation
and demonstrating strong generalization across diverse event datasets. Similarly, [258] proposes a multi-scale feature
distillation method to align embeddings from event data with RGB images, further facilitating the adaptation of SAM for
robust and universal object segmentation in the event domain. Although mostly evaluated on datasets, these methods
have strong potential in IoT applications, such as crowd detection and traffic data acquisition, as well as in medical
contexts like high-speed particle tracking in microfluidic devices, where accurate object segmentation is essential.

6.3 Simultaneous Localization and Mapping (SLAM)

Event-based SLAM leverages the high temporal resolution and low latency of event cameras for robust localization and
mapping in dynamic environments [259, 260]. A key enhancement is multimodal fusion, combining complementary
sensors to overcome individual limitations. For instance, Ultimate SLAM [261] fuses events, frames, and IMU data for
HDR and high-speed scenarios, while Implicit Event-RGBD Neural SLAM [260] integrates event and RGB-D data to
handle motion blur and lighting changes. Advances in feature representation further boost robustness. Line-based SLAM
methods [158] mitigate feature loss in fast motion or low-light using PTAM frameworks, while optimization-based
approaches like CMax-SLAM [262] apply contrast maximization for precise rotational motion estimation through
event-based global bundle adjustment. Despite these promising results, most event-based SLAM methods remain at the
proof-of-concept stage, validated mainly in controlled or semi-controlled scenarios. Only a few methods have been
demonstrated in real-world dynamic environments [259, 263], indicating that full deployment readiness is still limited.

7 FUTURE DIRECTION AND DISCUSSION

Despite extensive research on event cameras, their application in mobile sensing remains in its early stages, with
significant opportunities for advancement while balancing trade-offs in latency, power consumption, and accuracy.
(1) Improving event cameras using optics devices. Event cameras respond only to illumination changes and remain
inactive in fully static scenes, limiting continuous perception. While some hardware-based solutions exist, they often
reduce energy efficiency due to added mechanical components [35, 264]. Future work could explore dynamic optical
elements, such as electro-optic materials, to induce controlled illumination changes via optical phase arrays, enabling
detection in static environments. Hybrid optical-electronic systems, combining event cameras with active illumination
or computational imaging, may further enhance performance [249, 265]. Key challenges remain, including designing
diverse scanning patterns without blind spots, developing easily implementable non-mechanical illumination devices,
and improving event signal quality under high-speed illumination.
(2) Designing neuromorphic hardware to facilitate event processing. Current hardware faces challenges in
processing event-based data. CPUs suffer from frequent context switching, while GPUs are ill-suited for asynchronous,
high-frequency events. FPGAs provide parallelism and low latency but lack end-to-end pipeline optimization. Although
some efforts have developed dedicated accelerators [39, 171, 174], the massive data volume in event stream (e.g.,
thousands of events in milliseconds) can easily overwhelm I/O bandwidth, and end-to-end latency often violates worst-
case budgets under event bursts, causing jitter that disrupts control loops. Moreover, mapping high-level neural models
to neuromorphic ISAs remains manual and brittle, limiting programmability and debugging. Future work should pursue
specialized neuromorphic hardware tailored for event-driven computing. Architectures based on SNNs or asynchronous
pipelines can better exploit event sparsity, while higher-throughput interconnects with QoS, priority channels for
control streams, and traffic shaping can alleviate I/O bottlenecks. Hard real-time scheduling, bounded-latency NoCs,
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and deadline-aware routers are needed to guarantee temporal determinism. Finally, stable intermediate representations
(IRs) and compiler toolchains are essential to improve programmability across diverse neuromorphic platforms.
(3) Leveraging the complementary strengths of event camera and other sensors. Event cameras complement
frame cameras, radar, and LiDAR by providing high temporal resolution and low latency, which mitigate motion
blur and enhance perception in dynamic environments. While frame cameras offer texture and color [32, 266], radar
ensures robustness under poor lighting and weather [5, 267], and LiDAR supplies precise 3D geometry [268, 269], their
integration with event streams enables improved visual odometry, detection, reconstruction, and SLAM. Yet, most
existing fusion methods remain loosely coupled and overlook the intrinsic properties of raw multimodal data—for
instance, frame images are spatially dense but temporally sparse, event and radar data are spatially sparse yet temporally
dense, and LiDAR point clouds are sparse in both space and time. Future research should therefore develop tightly
coupled deep learning– or optimization-based frameworks that explicitly exploit these raw data complementary
characteristics, alongside optimized hardware designs for real-time, energy-efficient robotic applications.
(4) Bio-inspired algorithm design. Event cameras inherently exhibit neuromorphic traits, making themwell-suited for
bio-inspired algorithms. Integrating SNNs, which process discrete spikes like the brain, enables sparse, low-power, and
precise event-driven perception for tasks such as recognition and tracking [270]. Bio-inspired models based on primate
vision improve segmentation [39], while neuromorphic control systems emulate sensorimotor loops for fast decisions
[271]. Nevertheless, most current innovations primarily focus on mimicking the biological mechanisms, developing
sophisticated algorithms or hardware for high-level recognition and scene understanding. While inspiring, such
approaches may not be optimal for tasks requiring strict real-time performance due to their significant computational
overhead, or in some cases, may be impractical to realize. Future research should therefore explore alternative nature-
inspired strategies—rather than strictly replicating biological mechanisms—by designing bio-inspired models that enable
efficient event processing, and by optimizing neuromorphic hardware to effectively support these systems.
(5) Hardware-software co-optimization techniques. Efficient event data processing requires tight hardware-
software co-design. Traditional hardware struggles with asynchronous, sparse event streams. Dedicated neuromorphic
hardware—such as SNN chips, FPGA-based processors, and ASICs—can better support event-driven computation,
improving efficiency [39, 174]. On the software side, event-driven programming models and lightweight architectures
are needed to reduce latency and redundancy, as conventional deep learning frameworks are not well-suited for event
data [32]. However, most existing approaches focus on either hardware or software in isolation, overlooking cross-layer
optimizations. Techniques such as dynamic resource allocation, memory access optimization, and hardware-aware
model compression could further improve speed and energy efficiency. Future research should therefore emphasize
holistic co-design of algorithms and neuromorphic hardware to realize real-time, low-power event-based vision systems
for robotics, autonomous driving, and edge intelligence.

8 CONCLUSION

Event-based vision is a transformative approach for mobile sensing, offering high temporal resolution, low latency, and
energy efficiency. This survey reviews event camera principles, event representations, algorithms, hardware/software
acceleration, and diverse mobile applications. Despite advantages, challenges remain in event processing, sensor fusion,
and real-time use on resource-limited platforms. Future work should enhance hardware with advanced optics, develop
neuromorphic processors for asynchronous data, and apply bio-inspired algorithms to boost perception. Integrating
event cameras with LiDAR and radar will further broaden applications in dynamic settings. We hope this survey inspires
research and practical deployment in the mobile sensing field.
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