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Abstract
Event cameras provide micro-second latency and broad dynamic
range, yet their raw streams are marred by spatial artifacts (e.g.,
hot pixels) and temporally inconsistent background activity. Exist-
ing methods jointly process the entire 4D event volume (x, y, p, t),
forcing heavy spatio-temporal attention that inflates parameters,
FLOPs, and latency. We introduce EDmamba, a compact event-
denoising framework that embraces the key insight that spatial and
temporal noise arise from different physical mechanisms and can
therefore be suppressed independently. A polarity- and geometry-
aware encoder first extracts coarse cues, which are then routed to
two lightweight state-space branches: a Spatial-SSM that learns
location-conditioned filters to silence persistent artifacts, and a
Temporal-SSM that models causal signal dynamics to eliminate
bursty background events. This decoupled design distills the net-
work to only 88.9K parameters and 2.27GFLOPs, enabling real-time
throughput of 100K events in 68ms on a single GPU, 36× faster than
recent Transformer baselines. Despite its economy, EDmamba es-
tablishes new state-of-the-art accuracy on four public benchmarks,
outscoring the strongest prior model by 2.1 percentage points.

1 Introduction
Inspired by biological vision, event cameras asynchronously record
per-pixel brightness changes with microsecond latency, ultra-high
dynamic range (>120 dB), and low power consumption (<10 mW).
These unique properties enable event-based perception to excel in
high-speed and high-dynamic-range scenarios, powering break-
throughs in visual tracking [1], SLAM [2], and obstacle avoid-
ance [3]. However, this high temporal resolution is a double-edged
sword: it also amplifies sensitivity to minor brightness fluctuations,
thermal noise, and sensor imperfections. As a result, event streams
often contain a large number of spurious events that obscure valid
motion patterns, hinder downstream perception, and overwhelm
system bandwidth with excessive event rates [4]. Robust denois-
ing is therefore a critical prerequisite for building scalable, high-
performance event-driven systems.

Recent advances in event denoising have progressed from early
methods based on statistical priors [5], spatiotemporal filtering [6],
and surface fitting [7] to data-driven approaches. Deep learning-
based models such as the CNN-based EDnCNN [8] and the point-
based AEDNet [9] focus on local neighborhood patterns, while the
Transformer-based EDformer [10] enables global context modeling
but suffers from intensive computation. More recently, state space
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Figure 1: Performance vs. efficiency on event denoising with
100K events from DND21 (346×260, Hotel-bar and Driving
scenes). EDmamba (red star) achieves state-of-the-art accu-
racy with low FLOPs, few parameters, and fast inference. All
methods were evaluated under identical settings. Marker col-
ors indicate FLOPs; sizes reflect parameter counts.

models like Mamba [11] have emerged for linear-time sequence
modeling, and Pre-Mamba [12] extends this framework to 4D event
deraining.

Despite architectural diversity, these models commonly treat
event denoising as a 4D problem across spatial and temporal dimen-
sions, and adopt unified spatio-temporal processing backbones. This
joint modeling necessitates dense self- or cross-attention across
space and time, resulting in redundant computation and limited
adaptability to heterogeneous noise patterns. As a result, these mod-
els are often over-parameterized and suffer from high latency, lim-
iting their suitability for real-time use. For instance, Transformer-
based models can take over 2 seconds to process 100K events [10],
which severely undermines the speed advantage of event cameras
in high-throughput applications such as UAV navigation and au-
tonomous driving.

To address this, we rethink event denoising from a noise-centric
perspective. While event noise originates from diverse sources such
as shot noise, fixed-pattern artifacts, and thermal leakage, its man-
ifestations are often decoupled across time and space. Temporal
noise, such as stochastic firings and polarity flips, lacks motion
continuity and coherence, whereas spatial noise from hot pixels
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produces localized, structurally aberrant activations. This obser-
vation motivates a decoupled architecture that separates spatial
and temporal denoising into two lightweight, parallel branches. By
isolating distinct noise patterns, this design reduces computational
overhead and improves adaptability, offering lower latency without
sacrificing accuracy.

Building on this insight, we propose EDmamba, a lightweight
and effectiveEventDenoisingmodel that combinesmodality-specific
processing with the efficiency of State Space Models. EDmamba
operates directly on raw event streams represented as compact 4D
event clouds, which encode spatial coordinates, polarity, and precise
timestamps. ACoarse Feature Extraction (CFE)module first encodes
geometric and polarity-aware features. These are then processed by
two separate SSM branches: a Spatial Mamba (S-SSM) that captures
local geometric patterns to suppress spatially incoherent noise, and
a Temporal Mamba (T-SSM) that models temporal dynamics to
eliminate temporally inconsistent activations. While structurally
decoupled, the two streams interact via a shared Spatial-Temporal
State Space Block (STSSB), enabling joint reasoning without entan-
gled feature extraction. A U-Net-style encoder-decoder backbone
ensures multi-scale information flow through skip connections,
supporting both localized denoising and global context integration.

EDmamba achieves state-of-the-art performance with a compact
design. It requires only 88.98K parameters and 2.27 GFLOPs, and
efficiently processes 100K events in just 0.0685 seconds. Compared
to recent Transformer-based methods, it achieves a 2.08% improve-
ment in denoising accuracy while offering 36 times faster inference.
This balance of accuracy, speed, and scalability makes EDmamba a
practical and robust solution for real-time event-based perception.
Our main contributions are as follows:

• We demonstrate that spatial and temporal noise in event
streams exhibit distinct patterns and can be more effectively
suppressed through decoupled denoising. This design insight
enables simultaneous improvements in both accuracy and
efficiency.

• We propose EDmamba, the first state space model specifi-
cally designed for event denoising. It extracts polarity- and
geometry-aware features from 4D event clouds, and applies
two lightweight, decoupled Mamba branches that indepen-
dently model spatial and temporal noise characteristics for
targeted suppression.

• We conduct extensive experiments demonstrating that ED-
mamba outperforms strong baselines in both denoising accu-
racy and inference speed, while requiring significantly fewer
parameters.

2 Related Work
Event denoising has advanced through various approaches, includ-
ing signal processing, statistical modeling, surface fitting, and deep
learning. These methods have improved the robustness of event-
based perception in noisy conditions.
Statistical methods. Early techniques leveraged statistical heuris-
tics to suppress spurious events by evaluating event density within
local spatiotemporal neighborhoods, rejecting low-density events as

noise [5]. The pioneering work by Delbrück [13] proposed density-
based filtering with spatial context. Subsequent improvements [14–
16] optimized computational efficiency through enhanced event
storage and processing. However, their reliance on manual parame-
ter tuning hinders generalization across diverse scenarios.
Filtering-based methods. To better accommodate the sparse,
asynchronous nature of event data, researchers have introduced
filtering techniques along temporal, spatial, and spatiotemporal
axes. Temporal filters [6] leverage temporal correlation, often ex-
ploiting patterns from edge motion. Spatial filters [17] analyze local
intensity changes to distinguish signal events. Spatiotemporal fil-
ters [18, 19] integrate both domains to suppress background activity
(BA) noise while preserving motion-related information. Notably,
[14] showed that combining spatial and temporal cues yields more
effective noise suppression than either alone.
Surface fitting techniques. Surface fitting offers an alternative
denoising strategy by modeling the spatiotemporal distribution
of events. EV-Gait [7] and GEF [20] apply local plane fitting and
optical flow to differentiate noise from coherent motion. Time-
surface (TS) representations [6, 21] convert event streams into
decaying memory surfaces that encode temporal history, aiding
in distinguishing structured signals from random outliers. These
methods perform well under smooth motion but often degrade in
fast dynamics or low-light environments.
Deep learning-based methods. Recent advances in deep learning
have enabled data-driven event denoising through end-to-end learn-
ing. These models are typically trained on noisy-clean event pairs
or self-supervised proxies. Early work like K-SVD [22] employed
sparse feature learning, followed by EDnCNN [8], which fuses
frame and IMU data via convolutional networks. EventZoom [23]
introduced noise-to-noise training with a U-Net, and AEDNet [9]
leveraged PointNet to process raw event streams. MLPF [16] ex-
plored probabilistic modeling, while Alkendi et al.[24] combined
GNNs and transformers for per-event classification. EDformer[10]
adopts a pure transformer architecture for event-wise denoising.
Although not designed for denoising, Pre-Mamba [12] extends state
space models to 4D event sequences for deraining, highlighting
their potential for high-resolution event modeling.

3 Method
3.1 Working Principle
Our event denoising framework is grounded in the physical mecha-
nisms of event generation and sensor noise. An event is triggered at
pixel u = (𝑥,𝑦)⊤ when the log-intensity change exceeds a contrast
threshold 𝐶 , yielding a polarity 𝑝 ∈ {−1,+1}:

𝑝𝐶 = Δ𝐿(u, 𝑡) ≜ log 𝐼 (u, 𝑡) − log 𝐼 (u, 𝑡 − Δ𝑡). (1)

This change can be decomposed as Δ𝐿 = Δ𝐿𝑠 + Δ𝐿𝑛 + Δ𝐿𝑐 , where
Δ𝐿𝑠 denotes motion-induced signal, approximated by:

Δ𝐿𝑠 ≈ −∇ log 𝐼 · vΔ𝑡, (2)

where ∇ log 𝐼 is the spatial log-intensity gradient and v the image-
plane velocity. The remaining terms Δ𝐿𝑛 and Δ𝐿𝑐 denote photonic
and circuit-level noise, respectively. Specifically, Δ𝐿𝑛 models pho-
ton shot noise and background activity, often causing temporally
incoherent firings, while Δ𝐿𝑐 captures thermal leakage and fixed-
pattern artifacts such as hot pixels, leading to spatially inconsistent
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Figure 2: Overview of the EDmamba architecture. Raw events are grouped into 4D event clouds capturing spatial, temporal, and
polarity information. The Coarse Feature Extraction (CFE) module projects events into geometric and polarity-aware subspaces.
The U-Net-style denoising backbone employs multi-scale Spatial-Temporal State Space Blocks (STSSBs), composed of two
complementary modules: Spatial SSM (S-SSM) suppresses spatially incoherent noise by modeling local geometric consistency,
while Temporal SSM (T-SSM) filters temporally inconsistent events by capturing motion-aligned patterns across time.

activations:

Δ𝐿𝑛 ∼ N(0, 𝜎2
𝑛) + 𝜆𝐵𝐴P(𝛾𝐵𝐴),

Δ𝐿𝑐 = 𝜂𝑡ℎ

(
𝑘𝐵𝑇

𝑒

)
+ 𝐼𝑑𝑎𝑟𝑘Δ𝑡

𝐶𝑝𝑑

,
(3)

where 𝜎𝑛 is the readout noise, 𝜆𝐵𝐴 the background activity rate,
𝛾𝐵𝐴 the gain, 𝑘𝐵 the Boltzmann constant, 𝑇 the temperature, 𝑒 the
electron charge, 𝐼𝑑𝑎𝑟𝑘 the leakage current, and 𝐶𝑝𝑑 the photodiode
capacitance.

These noise sources manifest in distinct ways on the event
stream. As visualized in Fig. 3(a), signal events exhibit smooth,
motion-aligned trajectories. In contrast, background activity in-
troduces jittery temporal spikes that disrupt coherence, while hot
pixels continuously fire at fixed positions, violating spatial consis-
tency. To differentiate such patterns, we implement a state-space
classifier that integrates local spatial and temporal neighborhoods:

𝑓𝜃 : (N𝑠 (𝑒𝑖 ),N𝑡 (𝑒𝑖 )) → {0, 1}, (4)

where N𝑠 and N𝑡 denote spatial and temporal neighborhoods. The
classifier integrates local geometry and motion continuity to sup-
press structured spatial and temporal noise.

3.2 EDmamba
Overview Architecture. Fig. 2 illustrates the architecture of ED-
mamba, a dual-branch encoder-decoder framework for event de-
noising. Raw events are encoded as a spatiotemporal point cloud
and structured into a 4D tensor. A Coarse Feature Extraction (CFE)
stage applies depthwise convolutions and linear projections to
jointly encode geometric and polarity-aware features. To address
different noise types, EDmamba includes two decoupled branches:
the Spatial SSM (S-SSM) targets location-dependent structured
noise such as leakage and fixed-pattern effects, while the Tem-
poral SSM (T-SSM) handles temporally uncorrelated background
activity modeled as Poisson and thermal noise. For directional mod-
eling, the 4D event cloud is flattened into three sequences: two
spatial (via space-filling curves) and one temporal (via time scan).
These are processed through a U-Net-style hierarchy of multi-scale
Spatial-Temporal State Space Blocks (STSSBs), which embed S-SSM
and T-SSM modules to model spatial and temporal dependencies.
Fused features are decoded to generate denoised events, with skip
connections preserving information across scales.
Input Representation. We represent raw events as 𝐸 = {𝑒𝑖 }𝑁𝑖=1,
where each 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖 ) denotes an event with spatial coor-
dinates (𝑥𝑖 , 𝑦𝑖 ), timestamp 𝑡𝑖 , and polarity 𝑝𝑖 ∈ {−1, 1}. The event
stream is divided into 𝐿 consecutive segments {𝑆𝑘 }𝐿𝑘=1, each contain-
ing 𝑁 events. Within each segment 𝑆𝑘 , timestamps are normalized
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Figure 3: (a) Visualization of signal events and spatiotempo-
rally incoherent noise. (b) Feature decomposition into geom-
etry and polarity components in CFE module. Red and blue
dots indicate ON and OFF polarity events, respectively.

using the first and last event times, 𝑡0 = 𝑡𝑘start and 𝑡𝑒 = 𝑡𝑘end, as:

𝑧𝑖 =
𝑡𝑖 − 𝑡0

𝑡𝑒 − 𝑡0
, for 𝑒𝑖 ∈ 𝑆𝑘 , (5)

yielding a 3D pseudo point cloud (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ). Incorporating polarity
𝑝𝑖 gives a 4D event cloud (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑝𝑖 ) that preserves spatial co-
ordinates, temporal order, and polarity cues. This representation
preserves spatial structure, captures local temporal context via nor-
malized timestamps, and retains polarity information in a compact,
learnable form.
Event Sampling. To reduce redundancy while retaining salient
motion patterns, we apply structured sampling to the high-rate
event stream. Events are voxelized by discretizing the normal-
ized timestamp 𝑧𝑖 with voxel size 𝑣 , forming integer coordinates
(𝑥𝑖 , 𝑦𝑖 , ⌊𝑧𝑖/𝑣⌋, 𝑝𝑖 ). A spatial hash functionH : Z4 → N assigns each
voxel a unique key. During training, one event is randomly sampled
from each non-empty voxel, preserving statistical diversity while
reducing computation and suppressing spurious noise.
Coarse Feature Extraction. To support effective denoising, we
propose a Coarse Feature Extraction (CFE) module that decomposes
the 4D event cloud into two modality-specific components: geo-
metric structure and polarity signal (Fig. 3(b)). This decomposition
reflects two fundamental properties of event data: (i) signal events
often form coherent geometric patterns aligned with motion; (ii)
polarity provides an additional modality that is unique to event
cameras, and polarity inconsistencies are frequently indicative of
noise such as flip errors or unstructured background firing.

Given a segment of events E𝑛 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑝𝑖 )}𝑀𝑛

𝑖=1 , CFE applies
1D convolutions with activation functions to extract axis-wise fea-
tures. The geometric and polarity branches operate on (𝑥,𝑦, 𝑧) and
(𝑥,𝑦, 𝑝) respectively, encoding motion-aligned structures and po-
larity consistency. Axis-wise convolutions extract modality-specific
features, which are subsequently fused via a 1 × 1 projection:

𝑓𝑖 = Conv1×1{(𝜙geom, 𝜙pol)concat}, (6)

yielding a compact point-wise embedding 𝑓𝑖 that preserves spatial,
temporal, and polarity-aware cues. These features are subsequently
passed to two decoupled branches, each specialized in suppressing
either structured spatial artifacts or stochastic temporal noise.

3.3 S-SSM: Spatial Modeling with Local
Geometric Priors.

Spatial noise in event cameras often originates from fixed-pattern
leakage, hot pixels, or circuit-level inconsistencies. These recur-
ring artifacts usually exhibit location-dependent repetition and
significantly disrupt the surrounding local geometric coherence. To
mitigate such structured artifacts, we design a Spatial State-Space
Module (S-SSM) that explicitly incorporates spatial priors.

S-SSM leverages space-filling curves (e.g., Z-order, Hilbert) to
flatten the 3D spatial domain into sequences while preserving neigh-
borhood continuity. This allows the model to reason over local geo-
metric patterns and edge structures. The sequences are processed
by Mamba blocks with depthwise convolutions and bidirectional
state updates, capturing both short- and long-range dependencies
efficiently. The design biases the model toward spatial smooth-
ness, enabling it to detect structural edges and suppress isolated
or repetitive noise. As spatial noise lacks meaningful scene-driven
causes, S-SSM focuses on enforcing geometric regularity rather
than modeling causality.

3.4 T-SSM: Temporal Modeling with Motion
Continuity.

Temporal noise, caused by shot noise, thermal fluctuations, or back-
ground activity, severely disrupts the consistency of event streams
due to its highly random and unstructured temporal nature. To ad-
dress this challenge, we introduce the Temporal State-Space Module
(T-SSM), which accurately captures motion-consistent patterns by
explicitly modeling bidirectional temporal dependencies.

T-SSM first sorts events by normalized timestamp to form a tem-
porally ordered sequence, which is processed by a bidirectional
Mamba block to capture forward and backward motion patterns.
By learning global temporal consistency, T-SSM suppresses scat-
tered or flickering events while preserving coherent trajectories.
This design reflects a key physical prior: real motion yields causally
consistent patterns, while temporal noise is fundamentally acausal.
To exploit this distinction, T-SSM learns consistent transitions to re-
move incoherent activations, working alongside the spatial branch
for joint spatiotemporal denoising.

4 Experiments
Implementation Details.We optimize EDmamba using a cross-
entropy objective, following standard practices in event denois-
ing [9, 10]. The model is implemented in PyTorch and trained for
50 epochs on eight NVIDIA RTX A6000 GPUs with a batch size
of 128. We use the AdamW optimizer with an initial learning rate
of 8 × 10−5 per sample and a weight decay of 5 × 10−2 to ensure
stable convergence and effective regularization. During training,
input events are voxelized along the 𝑧-axis with a grid resolution
of 0.1 and a fixed sample size 𝑁 = 10240, preserving the spatiotem-
poral structure while maintaining computational efficiency. The
network adopts a U-Net-style architecture [26], consisting of a
two-stage encoder and a single-stage decoder with block depths of
[2, 4] and [2], respectively. The encoder applies serialized pooling
(scale factor 2) after the first stage, increasing channels from 8 to
16. The decoder uses serialized unpooling and skip connections for
multi-scale fusion.
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DND21 (346 × 260)

Methods 1 Hz/pixel 3 Hz/pixel 5 Hz/pixel 7 Hz/pixel 10 Hz/pixel
Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving

EvFlow 0.5137 0.5341 0.5144 0.5351 0.5154 0.5359 0.5160 0.5368 0.5172 0.5379
TS 0.5785 0.6824 0.5721 0.6262 0.5695 0.6250 0.5688 0.6249 0.5689 0.6246

DWF 0.8911 0.6592 0.8616 0.6532 0.8778 0.6502 0.8683 0.6452 0.8563 0.6366
KNoise 0.6780 0.6297 0.6524 0.6203 0.6579 0.6201 0.6489 0.6148 0.6413 0.6146
YNoise 0.7699 0.8086 0.7658 0.8041 0.7594 0.7978 0.7553 0.7949 0.7507 0.7873
RED 0.6475 0.5873 0.6571 0.5913 0.6634 0.5944 0.6721 0.6003 0.6867 0.6062

AEDNet 0.8070 0.8368 0.8568 0.8337 0.9561 0.8325 0.8850 0.8071 0.8990 0.8201
EDnCNN 0.9573 0.8873 0.9371 0.8771 0.9365 0.8748 0.9254 0.8654 0.9006 0.8574
EDformer 0.9928 0.9542 0.9891 0.9472 0.9845 0.9424 0.9793 0.9344 0.9699 0.9264

Ours 0.9963 0.9694 0.9949 0.9710 0.9955 0.9734 0.9939 0.9689 0.9916 0.9636
DVSCLEAN (1280 × 720)

Methods Double-bracket Double-ship Double-airplane Multi-helicopter Multi-car
50% 100% 50% 100% 50% 100% 50% 100% 50% 100%

EvFlow 0.6221 0.7591 0.6998 0.6959 0.8100 0.7922 0.8562 0.8368 0.7919 0.7808
TS 0.8303 0.8092 0.8054 0.7919 0.8507 0.8120 0.8749 0.8343 0.8707 0.8438

DWF 0.5995 0.6313 0.5998 0.6325 0.5770 0.5954 0.6201 0.6048 0.6098 0.5957
KNoise 0.5958 0.5765 0.5950 0.5805 0.5751 0.5563 0.5909 0.5713 0.5975 0.5775
YNoise 0.6194 0.6156 0.5903 0.5886 0.6634 0.6529 0.7504 0.7356 0.6540 0.6471
RED 0.5972 0.6792 0.6469 0.6439 0.7357 0.7109 0.7308 0.7062 0.7458 0.7289

AEDNet 0.7314 0.6349 0.7142 0.6450 0.5530 0.5158 0.6509 0.5822 0.6160 0.5409
EDnCNN 0.9432 0.7766 0.9473 0.7776 0.9295 0.7827 0.9394 0.7679 0.9301 0.7615
EDformer 0.9209 0.8565 0.9382 0.8801 0.8745 0.7924 0.8945 0.8251 0.9056 0.8431

Ours 0.9457 0.9248 0.9684 0.9572 0.9684 0.8704 0.9247 0.9122 0.9218 0.9036
Table 1: AUC results on DND21 and DVSCLEAN under varying shot noise rates. Best and second best results are highlighted.

Datasets.We evaluate EDmamba on both labeled and unlabeled
event datasets across synthetic and real-world domains. Supervised
training is conducted on ED24 [10], a large-scale dataset annotated
for background activity noise, collected under 21 controlled illumi-
nation levels with DAVIS346. Quantitative evaluation is performed
on two labeled benchmarks: DVSCLEAN [9], a synthetic dataset
generated via ESIM with noise injection, and DND21 [16], a v2e-
based dataset with frame-level supervision. To assess generalization
and denoising quality, we further evaluate on unlabeled real-world
datasets E-MLB [25], which contains diverse indoor and outdoor
motions under varying lighting.
Compared Methods. We conduct extensive comparisons with
state-of-the-art event denoisingmethods across both traditional and
learning-based categories. For conventional approaches, we evalu-
ate against density-based filters: BAF [13], KNoise [15], DWF [16],
and YNoise [27]; time-surface methods: TS [21] and IETS [6]; the
recursive event denoiser MLB [25]; optical flow-based method
EvFlow [7]; and the guided filter GEF [20]. On the learning-based
side, we compare with MLP-based method MLPF [16], CNN-based
models EDnCNN [8] and EventZoom [23], the PointNet-based AED-
Net [9], and the Transformer-based EDformer [10].
Metrics. For labeled datasets (DVSCLEAN [9] and DND21 [16]), we
evaluate denoising performance using the Area Under the Curve
(AUC) of event-level predictions, computed from binary ground-
truth labels. For the unlabeled dataset E-MLB [25], we adopt the
Mean Event Structural Ratio (MESR) [25], which quantifies struc-
tural consistency by measuring contrast enhancement in motion-
compensated event volumes. Unlike label-dependent metrics, MESR
leverages statistical regularities in the event stream and does not
require annotations or auxiliary modalities, making it suitable for
real-world evaluation.

4.1 Quantitative Evaluation
To evaluate denoising performance on labeled datasets, we compute
AUC scores following the evaluation protocol in [16], with results
reported in Tab. 1. DND21 includes two 346×260 test scenes with
shot noise rates from 1–10 Hz/pixel, simulating low-light condi-
tions. DVSCLEAN provides five 1280×720 sequences under two
noise levels (50% and 100%). Our EDmamba achieves the highest
AUC scores on DND21 by effectively handling varying shot noise
levels. On average, EDmamba achieves AUC scores of 0.9944 and
0.9693 on the hotel-bar and driving scenes, outperforming ED-
former with relative AUC improvements of 1.15% and 3.01%. While
EDmamba achieves leading performance on most DVSCLEAN se-
quences, EDnCNN slightly outperforms it in a few cases due to its
use of 𝑘-nearest spatio-temporal neighbors for fine-grained event
aggregation. However, this explicit neighbor search increases com-
putational cost (Tab. 3), whereas EDmamba processes raw streams
directly with higher efficiency.

To further evaluate the generalization of EDmamba in label-free,
real-world scenarios, we conduct MESR testing on the E-MLB (Day-
light, Night) and DND21 datasets. As shown in Tab. 2, EDmamba
consistently delivers strong MESR performance, demonstrating ro-
bust denoising under challenging lighting. While methods like TS
tend to achieve high MESR by over-suppressing both noise and
informative background content, EDmamba strikes a better balance
between denoising and content preservation.

4.2 Qualitative Evaluation
To illustrate the effectiveness of our method, we present visual com-
parisons across different datasets and noise levels. Fig. 4 presents
qualitative comparisons on the E-MLB dataset under daytime and
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Figure 4: Visual comparison on the E-MLB [25] dataset under daytime (top two rows) and nighttime (bottom two rows) conditions.
EDmamba effectively suppresses background noise while preserving fine motion and structural details. In contrast, baseline
methods either leave residual noise or blur object contours, especially under low-light conditions.

Method E-MLB (Daylight) E-MLB (Night) DND21
ND1 ND4 ND16 ND64 ND1 ND4 ND16 ND64 -

Raw 0.821 0.824 0.815 0.786 0.890 0.824 0.786 0.768 0.869
TS [21] 0.943 0.955 0.980 0.995 0.938 0.884 0.859 0.907 0.954
EvFlow [7] 0.871 0.919 0.917 0.921 0.951 0.876 0.852 0.886 1.034
IETS † [6] 0.772 0.785 0.777 0.753 0.950 0.823 0.804 0.711 0.900
KNoise [15] 0.787 0.819 0.810 0.786 0.904 0.842 0.819 0.860 0.998
EDnCNN [8] 0.887 0.908 0.903 0.912 1.001 1.024 1.079 1.086 0.977
YNoise [27] 0.902 0.922 0.917 0.934 0.962 0.895 0.874 0.928 0.984
GET † [20] 1.051 0.938 0.935 0.927 1.027 0.955 0.946 0.935 0.932
EventZoom † [23] 0.996 0.988 0.996 0.970 1.055 1.007 1.010 0.988 1.059
MLPF [16] 0.851 0.855 0.846 0.840 0.926 0.928 0.910 0.906 0.944
DWF [16] 0.932 0.945 0.943 0.904 0.916 0.871 0.825 0.873 0.972
AEDNet [9] 0.789 0.836 0.803 0.789 0.887 0.929 0.929 0.958 0.919
RED [25] 0.971 0.943 0.946 0.923 0.948 0.973 1.001 0.916 0.945
EDformer [10] 0.952 0.955 0.956 0.942 1.048 1.019 1.076 1.099 1.041
Ours 0.976 0.990 0.985 0.972 1.002 1.025 1.082 1.089 1.057

†: The result is derived from E-MLB [25], as the official code is not publicly available.
Table 2: The MESR results of denoising methods on E-MLB and DND21 datasets. Best and second-best values are highlighted.

nighttime conditions. EDmamba preserves structural details across
diverse scenes. In theWindow and Meeting Room examples, it re-
tains fine architectural contours such as frame lines and corners,

while suppressing background clutter. In contrast, other methods
(e.g., DWF, YNoise) tend to oversmooth or break weak edges.

In nighttime Beam scenes, EDmamba demonstrates robustness
by preserving low-intensity, elongated light trails that are otherwise
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Method GFLOPs #Params Inf. Time (s) Rel. Speed
TS N/A N/A 0.1296 1.0×

EvFlow N/A N/A 1.5545 0.08×
DWF N/A N/A 0.0954 1.36×
KNoise N/A N/A 0.0198 6.55×
YNoise N/A N/A 0.0513 2.53×
RED N/A N/A 2.2716 0.06×

EDnCNN 234.51 614.55K 20.1885 1.0×
AEDNet 4400.46 45.87M 43.4250 0.46×
EDformer 8.41 49.80K 2.4943 8.09×

Pre-Mamba† 6.23 264.63K 0.0987 204.54×
Joint-SSM 5.17 102.91K 0.0931 216.85×

Ours 2.27 88.98K 0.0685 294.72×
†: The result is derived from Pre-Mamba [12].

Table 3: Efficiency comparison in terms of GFLOPs, parame-
ters, inference time, and relative speed (100K events).

removed by YNoise and AEDNet. This highlights our model’s ability
to distinguish faint but coherent motion patterns from stochastic
noise. These results validate the model’s capacity for structure-
aware denoising across lighting conditions. Due to the page limit,
additional qualitative results on two DND21 test scenes under two
noise levels are provided in the supplementary material.

4.3 Model Complexity and Efficiency
Comparison

We compare the computational efficiency of all methods in Tab. 3,
including FLOPs, model size, and inference time on 100K events
(NVIDIARTXA6000). Filtering-basedmethods (e.g., KNoise, YNoise)
are fast due to their lightweight, non-learnable design but general-
ize poorly. In contrast, learning-based models like EDnCNN and
AEDNet are slower, with larger models and inference times over
20s.

EDformer reduces model size using a lightweight Transformer
backbone, but its inference is limited by the quadratic complexity
of self-attention and joint modeling, taking 2.49 seconds for 100K
events. While Pre-Mamba was originally proposed for deraining,
it adopts a joint 4D state-space model that entangles spatial and
temporal dynamics, resulting in higher computational cost and 3×
more parameters than our decoupled design. To further validate
the benefit of decoupled spatial-temporal modeling, we design a
control variant named Joint-SSM as a comparative baseline. Instead
of using two separate Mamba branches, we adopt a shared Mamba
block to jointly encode spatial and temporal sequences. The spatial
and temporal event streams are first flattened via scan operations
and concatenated before being fed into the shared Mamba. Due to
the lack of task-specific specialization, this design requires more pa-
rameters and slower inference to achieve comparable performance,
underscoring the necessity of noise-specific modeling.

Our method achieves a superior trade-off between speed and ca-
pacity. With 88.98K parameters and 2.27 GFLOPs, it processes 100K
events in 0.0685 seconds, which is 36× faster than EDformer and
1.4× faster than Pre-Mamba. These results highlight the effective-
ness of our design in balancing efficiency and real-time applicability.

Method Variant AUC (%) Δ

Hotel-bar Driving Hotel-bar Driving
Full Model 99.55 97.34 – –
w/o Geometry Feat. 99.24 97.12 -0.31 -0.22
w/o Polarity Feat. 99.19 96.10 -0.36 -1.24
w/o S-SSM 98.78 95.70 -0.77 -1.64
w/o T-SSM 98.69 94.66 -0.86 -2.68
Joint-SSM 99.20 96.49 -0.35 -0.85
Table 4: Ablation study on DND21 at 5 Hz/pixel. We report
AUC scores (%) for two scenes (Hotel-bar and Driving), along
with performance drops (Δ) from the full model.

4.4 Ablation Experiments
To assess the role of each component, we conduct ablation studies
on the DND21 dataset (Tab. 4). Disabling either input feature causes
performance drops, with polarity having a greater impact, as it
encodes signal activity and reveals polarity-related noise unique
to event data. Removing either S-SSM or T-SSM causes a larger
degradation, indicating that temporal and spatial modeling plays
a more critical role than feature encoding alone. Among the two
branches, T-SSM contributes more in motion-heavy scenarios such
as Driving, highlighting the effectiveness of temporally ordered
modeling for motion continuity. We also compare against the Joint-
SSM variant introduced above. Despite using more parameters
and slower inference, it still underperforms our decoupled design,
reinforcing that task-specific modeling is more effective than simply
increasing model size.
5 Conclusion
This paper presents EDmamba, an efficient event denoising frame-
work built on decoupled spatial and temporal state space modeling.
By explicitly modeling distinct noise patterns through two special-
ized Mamba branches, EDmamba achieves high denoising accuracy
with reduced model size and inference latency. Our Coarse Feature
Extraction module captures both polarity information and geo-
metric structure, while the decoupled design ensures efficient and
task-specific processing. Extensive experiments across synthetic
and real-world datasets show that EDmamba outperforms prior
methods in both accuracy and efficiency. Our design highlights the
value of decoupled spatiotemporal modeling for event noise, offer-
ing a new perspective on architectural specialization in event-based
learning. Future work will explore integrating EDmamba into down-
stream systems and deployment on resource-constrained platforms,
pushing forward practical and scalable event-based perception.
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