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Figure 1. (A) YOLOv10[1] detections on event sequence with various rainfall rates (mm/hr). We render physically-based,
realistic rain sequences on images from the KITTI[2] dataset with simulator[3, 4]. Separating rain streaks contamination from
event data is beneficial for downstream tasks like object detection. (B) Event cameras, with their high temporal resolution and
dynamic range, excel in capturing rain’s complex spatio-temporal properties compared to frame-based cameras.

ABSTRACT
Event cameras excel in high-speed and high-dynamic-range
scenarios but are highly sensitive to rain, which introduces
significant noise while also revealing detailed rain features.
This paper introduces a novel Event-based Rain-Background
Decomposition Network that integrates Spiking Neural Net-
works (SNNs) and Convolutional Neural Networks (CNNs).
By "Distilling Rain," we reconstruct a rain-free background
for downstream tasks, and by "Collecting Rain," we extract
the physical characteristics of rain. Experimental evaluations
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demonstrate the network’s effectiveness in both background
reconstruction and rain modeling. This work extends the ca-
pabilities of event cameras by mitigating the adverse effects
of rain while also leveraging rain-induced noise to extract
valuable environmental data, enhancing their utility in both
challenging weather conditions and detailed environmental
analysis.
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1 INTRODUCTION
Event cameras, inspired by biological vision, are advanced
sensors that asynchronously report intensity changes at the
pixel level. Unlike traditional frame-based cameras that cap-
ture images at fixed intervals, event cameras excel in dy-
namic scenes with microsecond-level resolution, effectively
capturing high-speed motion without blurring[5, 6].
The potential applications of event cameras are vast and

varied, showing promise in drones[7], robotics[8], surveill-
ance[9], and virtual reality[10]. For instance, although robots
have proven crucial in applications such as urban sensing[11]
and emergency response[12], they often encounter chal-
lenges in obstacle avoidance[13] and localization[14], es-
pecially in high dynamic range and rapid motion scenarios
due to the limitations of traditional visual sensors. Introduc-
ing event cameras presents a fresh opportunity for real-time
perception in such challenging environments[15].

The main challenge of deploying event cameras in outdoor
environments, particularly under adverseweather conditions
such as rain, lies in their high sensitivity tomotion[16]. Event
cameras can detect minute changes in illumination. While
this characteristic is beneficial in capturing fast-moving ob-
jects and handling sudden lighting variations, it becomes
problematic in rainy conditions where raindrops gen-
erate rapid dynamic streaks in the event camera’s out-
put. These streaks can interfere with tasks such as object
detection and crowd sensing[17–19], leading to erroneous
detection and degraded performance (Figure 1(A)).

On the one hand, though rain streak removal is crucial
for the outdoor applications of event cameras, research on
event-based derain models remains relatively limited. Exist-
ing rain removal techniques predominantly focus on frame-
based cameras or utilize event cameras to assist frame
cameras in mitigating rain effects[20, 21]. Apart from these,
methods with direct use of event cameras generally con-
vert event data into images with frame-based algorithms[22]
or use predefined rules[23] based on raindrop characteristics
like direction and correlation. However, rainy conditions
are highly variable, these methods often lack adaptability to
varying rainy intensities and weather conditions.

On the other hand, understanding raindrop character-
istics—like size, shape, velocity, kinetic energy, and distri-
bution—is crucial for various applications such as remote
sensing, meteorology (weather prediction), telecommunica-
tions (signal distortion), agriculture, and horticulture (crop
yield)[24]. The moving rain streaks generate noticeable in-
tensity changes that match the dynamic perception of event
cameras (Figure1(B)), making them well-suited for model-
ing the complex spatio-temporal properties of rain. Existing
studies primarily use visible light video for daytime rainfall
estimation[25]. To address the need for rainfall estimation in
low visibility scenarios[26] (e.g., at night), some research
has proposed using near-infrared (NIR) cameras [27]. In

this study, event cameras’ high dynamic range and detailed
edge detection[28] are crucial for accurate rain profiling,
especially in low-light conditions. Additionally, by deploy-
ing event cameras on platforms such as unmanned aerial
vehicles[29, 30] and unmanned ground vehicles[31–33], this
technology can serve as a mobile rain gauge or weather sta-
tion. Thus, exploring the application of event cameras in
rainy weather is a promising new direction that deserves
more attention from researchers.
The problem this paper tries to address is: how to

effectively decompose the rain and background events from
a rainy event sequence, thereby leveraging both components
to enhance event camera performance and broaden their
applications. Three technical challenges have to be solved:
C1: Noise in Event Data. Noise from the physical prop-
erties of event cameras and brightness variations during
movement significantly impact data reconstruction quality.
C2: Variations in Rain Intensity. Different rain intensities
complicate the separation of rain from the background, re-
quiring model to generalize well across varying conditions.
C3: Reconstruction of Overlapping Rain and Back-
ground Events. Overlapping rain streaks at various po-
sitions makes high-fidelity restoration challenging.

In this paper, we propose an Event-based Rain-Background
Decomposition Network using a hybrid neural network of
SNNs and CNNs. SNNs model spatio-temporal information
by updating neuron membrane potentials and encoding data
through spike position and timing, effectively mitigating
noise and capturing event dynamics[34]. To avoid the van-
ishing spike phenomenon in deep spiking layers[35], we
instead implement the rain attention block and decoders
with deep CNNs, ensuring accurate decomposition across
varying rain intensities. For reconstructing overlapping rain
and background, we incorporate GAN-based learning mech-
anisms and contrastive loss functions. This hybrid approach
ensures robust performance across complex scenarios.

We created an event-based rainy synthetic dataset to val-
idate our approach and assessed the model’s performance
in two areas: background reconstruction and rain modeling.
The main contributions are summarized as follows:

• We leverage the unique properties of event cameras
to separate rain from the background, and to the best
of our knowledge, this work is the first to extend their
capabilities by mitigating rain effects while also ex-
tracting valuable data from rain-induced noise.

• We propose an Event-based Rain Decomposition Hy-
brid Network that integrates SNNs and CNNs to en-
hance rain separation and background recovery effi-
ciency and accuracy in diverse rainy conditions.

• We created an event-based rainy synthetic dataset and
conducted systematic experiments to validate our ap-
proach, demonstrating its effectiveness and reliability
in rain modeling and background reconstruction.
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2 PROBLEM DEFINITION
The purpose of this paper is twofold: first, to distill rain from
rainy events, and second, to collect and analyze the sepa-
rated rain data. By separating rain from the background, our
approach enhances the capabilities of event cameras in out-
door rainy conditions. Furthermore, the extracted rain data
contributes to a more precise understanding and modeling
of raindrop characteristics.

Figure 2. Rain distillation and collection for downstream
visual processing and rain analysis.

Given an observed rainy event sequence 𝐸Rain, it can be
mathematically expressed as the superposition of a rain com-
ponent 𝐸𝑅 and the clean background event 𝐸𝐵 :

𝐸Rain = 𝐸𝑅 + 𝐸𝐵 . (1)

Thus, the objective of "Distill Rain" is to generate a rain-
free output 𝐸∗

𝐵
from the rain-contaminated event 𝐸Rain, ap-

proaching the clean background event 𝐸𝐵 . Simultaneously,
our research indicates that event cameras are well-suited
for modeling the complex spatio-temporal properties of rain.
Collecting these "distilled" rain events can obtain certain
physical characteristics of the rain. Therefore, the objective
of the event-based "Collect Rain" process is to extract features
from the separated rain component 𝐸∗

𝑅
, thereby obtaining

information such as the velocity, size, and rainfall rate.

3 METHODOLOGY
The key to the rain-background decomposition network is
to project the rain layer and background layer into distin-
guishable subspaces[21]. Figure 3 illustrates the pipeline of
the decomposition network, which aims at reconstructing
the high-quality event sequence of the rain-free background
and learning rain physical properties from rain features.
3.1 Event Representation

Compared with conventional frame data, event data is es-
sentially a sparse spatio-temporal stream. Previous methods
sum events per pixel in event images[36], sacrificing tem-
poral detail and prone to motion blur. Our method converts
it into a fixed-size representation by discretizing the time
domain into 𝐵 bins, sharing a similar idea with[15]. Events

{(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖 )}𝑁𝑖=1 are discretized across 𝐵 bins to scale their
timestamps into the range [0, 𝐵 − 1]:

𝑡∗𝑖 = (𝐵 − 1) 𝑡𝑖 − 𝑡1

𝑡𝑁 − 𝑡1
,

𝑉 (𝑥,𝑦, 𝑡) =
∑︁
𝑖

𝑝𝑖𝑘𝑏 (𝑥 − 𝑥𝑖 )𝑘𝑏 (𝑦 − 𝑦𝑖 )𝑘𝑏 (𝑡 − 𝑡∗𝑖 ),
(2)

where 𝑘𝑏 (𝑎) = max(0, 1 − |𝑎 |), which is equivalent to the bi-
linear sampling kernel defined in [37]. Through this method,
we convert an event sequence into a fixed-size representation
𝐸 ∈ R𝐵×𝐻×𝑊 . In this paper, we consider two consecutive
event volumes 𝐸 as the input.
3.2 Hybrid Network with SNNs and CNNs
We illustrate the hybrid network in Figure 3. Initially,

event voxel grids are processed by an SNN encoder[34] that
extracts spatio-temporal features using three layers of Leaky
Integrate-and-Fire (LIF)[38] neurons. These neurons, com-
bined with convolutional operations, effectively encode tem-
poral dynamics while filtering out noise through their inher-
ent leaky properties. The SNN encoder processes data within
a predefined temporal window across multiple simulation
steps. This methodology helps preserve critical signal events
while minimizing the impact of irrelevant noise.

To avoid the vanishing spike phenomenon in deep spiking
layers[35], we integrate a Motion Encoder[39] with CNN
blocks. This encoder extracts higher-level motion features,
focusing on multi-scale and multi-level motion information,
ensuring robust feature extraction throughout the network.
These features are then fed into a rain attention block[21], al-
lowing the network to extract rain features due to their lower
density compared to the background. Background features
are obtained by subtracting the rain features, facilitating ef-
ficient rain-background separation. Finally, reconstruction
blocks[39] restore the background and rain layers, which can
be used to analyze raindrop size and fall speed distributions.
3.3 Network Training
To guide the training, we mainly explore three kinds of

loss for rain-background decomposition.
Event Contrast LossWe exploit the idea of contrastive

loss for the decomposition process, which brings positive
pairs closer and separates negative pairs. Rain events are
typically sparse and directional, whereas background events
display more complex spatiotemporal features. In our con-
text, we aim to pull estimated background events 𝐸∗

𝐵
closer to

the target events 𝐸𝐵 , while increasing the difference between
𝐸∗
𝐵
and estimated rainy events 𝐸∗

𝑅
by push them far away.

The contrastive loss L𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 function is defined as:

Lpos
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

= − sim(𝑓𝐸∗
𝐵𝑘

, 𝑓𝐸𝐵𝑘
)/𝜏,

Lneg
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

= log

(∑︁
𝑘

exp
(
sim(𝑓𝐸∗

𝐵𝑘

, 𝑓𝐸∗
𝑅𝑘

)/𝜏
))

,

L𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = Lpos
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

+ Lneg
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

.

(3)
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Figure 3. Pipeline of Our Proposed Rain-Background Decomposition Network. The network reconstructs high-quality
event sequences of the rain-free background and learns rain physical properties by separating rain features from the background.

where 𝑘 indexes the events voxel in the dataset. The sym-
bols 𝑓𝐸∗

𝐵𝑘

, 𝑓𝐸𝐵𝑘 , and 𝑓𝐸∗
𝑅𝑘

represent the downsampling fea-
tures of the estimated rain-free background event 𝐸∗

𝐵𝑘
, the

target clean event 𝐸𝐵𝑘
, and the estimated rainy event 𝐸∗

𝑅𝑘
,

respectively. The function sim(𝑓 , 𝑓 ′) computes the similar-
ity between feature representations, and 𝜏 is a temperature
parameter that scales the similarity scores.

Consistency Loss. To maintain the integrity of the image
content in the estimated background layer 𝐸∗

𝐵
, we employ a

self-consistency loss[21] by reconstructing the original rainy
frame 𝐸𝑅𝑎𝑖𝑛 from the estimated background and rain layers.
The self-consistency loss is formulated as follows:

LConsistency = ∥𝐸∗𝐵 + 𝐸∗𝑅 − 𝐸𝑅𝑎𝑖𝑛 ∥1, (4)

where ∥ · ∥1 denotes the 𝐿1 norm. This approach ensures
that the combination of the estimated background and rain
layers closely matches the observed rainy event data, thereby
preserving the content of the background layer.
Adversarial Loss.We integrate an adversarial loss into

our model to improve the realism of the generated clean
background event while maintaining data fidelity.

LAdv = E𝐸∗
𝐵

[
log𝐷 (𝐸∗𝐵)

]
+E𝐸rain

[
log

(
1 − 𝐷

(
𝐺𝐸∗

𝐵
(𝐸rain)

))]
,

(5)
where 𝐷 is the discriminator network that distinguishes be-
tween target clean event 𝐸𝐵 and generated events𝐺𝐸∗

𝐵
(𝐸rain),

which are generated from rainy weather events using𝐺𝐸∗
𝐵
.

The basic overall loss function is formulated as follows:

LOverall = L𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + LConsistency + LAdv . (6)

4 EVALUATION
In this section, we evaluate the proposed model in two ways.
First, we assess the method’s accuracy in background re-
covery using self-generated synthetic rainy event datasets.
Second, we demonstrate the effectiveness of our approach
in rain physical modeling through two case studies.
4.1 Dataset Preparation
To date, we have not found any large-scale datasets fo-

cused on rainy event scenarios. For training and quantita-
tive evaluation, we generated a synthetic dataset using an

event simulation framework[3]. Initially, we utilized a rain
rendering simulator to generate rainy videos based on the
KITTI dataset[2]. These videos encompassed varying cam-
era motion speeds and rain intensities, encompassing 12
distinct levels of rainfall rates, ranging from 1 mm/hr to 200
mm/hr. Then we utilized these rainy videos to simulate event
sequences[3]. This dataset consists of 4776 paired sequences
of rainy and corresponding clean event sequences. Each se-
quence is standardized to a duration of 100 milliseconds.
4.2 Training Details

We use PatchGAN[40] as the discriminator and the Adam
optimizer with learning rates of 2 × 10−4 and 4 × 10−4 for
the discriminator and generator, respectively, reduced via
cosine annealing. The event sequence is discretized into 10
bins, with each bin treated as a voxel; the model processes
two voxels at a time. The entire network is trained for 450
epochs on four NVIDIA RTX3080Ti GPUs.
4.3 Rain-free Background Reconstruction

Current deraining methods are mostly frame-based, lead-
ing to suboptimal performance with event data due to mis-
matches in texture and structure[41]. Frame-based models,
designed for spatially coherent images, do not align well with
the sparse, asynchronous nature of event data. Event-based
approaches like[42] treat event data as images, remaining
within the frame domain, while [23] focus on raindrop de-
tection. However, removing detected raindrops can cause
loss of overlapping information, making direct comparisons
difficult. Additionally, probability-based raindrop detection
is less effective in dense rainfall and noisy conditions.
Table 1. Deraining Performance and Estimated Rainfall
Rates at Various Intensities (mm/hr).

Rainfall PSNR SSIM Estimated Rainfall

1 26.56 0.89 0.98
20 23.76 0.92 20.3
50 24.43 0.85 49.2
100 23.87 0.82 99.1
125 24.29 0.80 125.5
150 23.56 0.78 149.3
175 23.44 0.75 175.2
200 23.29 0.73 197.7
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Figure 4. Results of Decomposing event camera data into rain and background layers at different rainfall intensities.
We selected the top three bins of the voxel grid for visualization. The top row shows the original rainy event input (𝐸rain). The
second row presents the ground truth rain-free background (𝐸𝐵). The third row illustrates the extracted rain layer (𝐸∗

𝑅
), and

the bottom row shows the extracted background layer (𝐸∗
𝐵
). Our method retains the polarity information of the events.

In contrast, our model leverages the unique characteristics
of event data by employing SNNs to filter noise and encode
features, and CNNs for decoding and reconstruction. This
approach preserves both spatial and temporal information,
including the polarity of events (with red representing posi-
tive events and blue representing negative events in Figure4).
As demonstrated in Table 1, our model achieves superior
background recovery across varying rainfall intensities. We
use Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index (SSIM) as evaluation metrics to assess the per-
formance of these methods. The average PSNR and SSIM
results are 24.15 and 0.8175, respectively.
4.4 Rain Physical Modeling Validation

Rainfall Rate Prediction. Since our synthetic rainy event
datasets include labels for rainfall rate, we can add a network
downstream of the decomposed rain features to learn the
rainfall rate. The prediction results for rainfall rate on the
test dataset are presented in the last column of Table 1. The
mean absolute error (MAE) in rainfall rate estimation is 0.71
mm/hr. It can be observed that the decomposed rain features
accurately capture the characteristics of rainfall rate.

Figure 5. Comparison of velocity maps before and after
rain-background decomposition.The left shows a velocity
map with combined background and noise, leading to high
complexity and low accuracy. The right displays the rain
velocity map post-decomposition, significantly improving
both efficiency and accuracy.

Rain Velocity Estimation. The combination of drop
velocity and drop size distribution enables the estimation
of kinetic energy. The rain layer reconstructed from rain
features can be directly utilized for velocity estimation. In
this case study, we employ particle-based flow measurement
techniques[43] to compute a velocitymap. From Figure 5, it is
evident that by effectively filtering out background noise and
extracting the rain layer, this method enhances the efficiency
and reliability of velocity estimation. This approach signifi-
cantly reduces computational load, laying a solid foundation
for further analysis of rain dynamics and their impacts.

5 CONCLUSION
This paper presents an event-based Rain-BackgroundDecom-
position method utilizing a hybrid network, demonstrating
robust and effective performance across various rainfall con-
ditions. By implementing a "distill rain" approach, the paper
addresses the challenges faced by event cameras in outdoor
rainy environments. Furthermore, it introduces an innova-
tive method for using event cameras to "collect rain" for
rain modeling. This development enhances the performance
of event cameras and expands their applicability in mete-
orological research. Future work will focus on developing
unsupervised learning techniques for decomposition, em-
ploying more systematic approaches to capture the physical
characteristics of rain with event cameras, and incorporating
real-world data collection and deployment.

ACKNOWLEDGMENTS
This paper was supported by the National Key R&D program
of China (2022YFC3300703), the Natural Science Foundation
of China under Grant 62371269, Guangdong Innovative and
Entrepreneurial Research Team Program (2021ZT09L197),
Shenzhen 2022 Stabilization Support Program (WDZC202208
11103500001) and Meituan.



PICASSO 24, November 18–22, 2024, Washington D.C., DC, USA Ruan and Zhao, et al.

REFERENCES
[1] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and

Guiguang Ding. Yolov10: Real-time end-to-end object detection. arXiv
preprint arXiv:2405.14458, 2024.

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Processings of IEEE
CVPR, pages 3354–3361, 2012.

[3] Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scara-
muzza. Video to events: Recycling video datasets for event cameras. In
Processings of IEEE CVPR, June 2020.

[4] Maxime Tremblay, Shirsendu S. Halder, Raoul de Charette, and Jean-
François Lalonde. Rain rendering for evaluating and improving robustness
to bad weather. International Journal of Computer Vision, 2020.

[5] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi,
Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew J Davison, Jörg
Conradt, et al. Event-based vision: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2020.

[6] Hao Cao, Jingao Xu, Danyang Li, Zheng Yang, and Yunhao Liu. Eventboost:
Event-based acceleration platform for real-time drone localization and
tracking. In IEEE INFOCOM, pages 1851–1859. IEEE, 2024.

[7] Xinlei Chen, Aveek Purohit, Carlos Ruiz Dominguez, Stefano Carpin, and
Pei Zhang. Drunkwalk: Collaborative and adaptive planning for navigation
of micro-aerial sensor swarms. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, pages 295–308, 2015.

[8] Haoyang Wang, Xuecheng Chen, Yuhan Cheng, Chenye Wu, Fan Dang,
and Xinlei Chen. H-swarmloc: efficient scheduling for localization of
heterogeneousmav swarmwith deep reinforcement learning. In Proceedings
of the ACM SenSys, pages 1148–1154, 2022.

[9] Guang Chen, Peigen Liu, Zhengfa Liu, Huajin Tang, Lin Hong, Jinhu Dong,
Jörg Conradt, and Alois Knoll. Neuroaed: Towards efficient abnormal event
detection in visual surveillance with neuromorphic vision sensor. IEEE
Transactions on Information Forensics and Security, 16:923–936, 2020.

[10] Jingao Xu, Guoxuan Chi, Zheng Yang, Danyang Li, Qian Zhang, Qiang
Ma, and Xin Miao. Followupar: Enabling follow-up effects in mobile ar
applications. In Proceedings of the ACM MobiSys, pages 1–13, 2021.

[11] Xuecheng Chen, Haoyang Wang, Yuhan Cheng, Haohao Fu, Yuxuan Liu,
Fan Dang, Yunhao Liu, Jinqiang Cui, and Xinlei Chen. Ddl: Empowering
delivery drones with large-scale urban sensing capability. IEEE Journal of
Selected Topics in Signal Processing, 2024.

[12] Jiyuan Ren, Yanggang Xu, Zuxin Li, Chaopeng Hong, Xiao-Ping Zhang, and
Xinlei Chen. Scheduling uav swarm with attention-based graph reinforce-
ment learning for ground-to-air heterogeneous data communication. In
Adjunct Proceedings of the 2023 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing & the 2023 ACM International Symposium
on Wearable Computing, pages 670–675, 2023.

[13] Jingao Xu, Danyang Li, Zheng Yang, Yishujie Zhao, Hao Cao, Yunhao Liu,
and Longfei Shangguan. Taming event cameras with bio-inspired architec-
ture and algorithm: A case for drone obstacle avoidance. In Proceedings of
the ACM MobiCom, pages 1–16, 2023.

[14] Haoyang Wang, Jingao Xu, Chenyu Zhao, Zihong Lu, Yuhan Cheng,
Xuecheng Chen, Xiao-Ping Zhang, Yunhao Liu, and Xinlei Chen. Trans-
formloc: Transforming mavs into mobile localization infrastructures in
heterogeneous swarms. In IEEE INFOCOM, pages 1101–1110. IEEE, 2024.

[15] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis.
Unsupervised event-based learning of optical flow, depth, and egomotion.
In Proceedings of the IEEE CVPR, pages 989–997, 2019.

[16] Haoyang Wang, Yuxuan Liu, Chenyu Zhao, Jiayou He, Wenbo Ding, and
Xinlei Chen. Califormer: Leveraging unlabeled measurements to calibrate
sensors with self-supervised learning. In Proceedings of the UbiComp, pages
743–748, 2023.

[17] Xinlei Chen, Susu Xu, Haohao Fu, Carlee Joe-Wong, Lin Zhang, Hae Young
Noh, and Pei Zhang. Asc: Actuation system for city-wide crowdsensing
with ride-sharing vehicular platform. In Proceedings of the Fourth Workshop
on International Science of Smart City Operations and Platforms Engineering,
pages 19–24, 2019.

[18] Zuxin Li, Fanhang Man, Xuecheng Chen, Baining Zhao, Chenye Wu, and
Xinlei Chen. Tract: Towards large-scale crowdsensing with high-efficiency
swarm path planning. In Adjunct Proceedings of the 2022 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM
International Symposium on Wearable Computers, pages 409–414, 2022.

[19] Xuecheng Chen, Zijian Xiao, Yuhan Cheng, ChenChun Hsia, Haoyang
Wang, Jingao Xu, Susu Xu, Fan Dang, Xiao-Ping Zhang, Yunhao Liu, et al.
Soscheduler: Toward proactive and adaptive wildfire suppression via multi-
uav collaborative scheduling. IEEE Internet of Things Journal, 2024.

[20] Shangquan Sun, Wenqi Ren, Jingzhi Li, Kaihao Zhang, Meiyu Liang, and
Xiaochun Cao. Event-Aware Video Deraining via Multi-Patch Progressive
Learning. IEEE Transactions on Image Processing, 32:3040–3053, 2023.

[21] Jin Wang, Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Unsupervised
Video Deraining with An Event Camera. In Proceedings of the IEEE CVPR,
pages 10831–10840, 2023.

[22] Haoyang Wang, Xinyu Luo, Ciyu Ruan, Xuecheng Chen, Wenhua Ding,
Yuxuan Liu, and Xinlei Chen. Poster: Fusing event and depth sensing for
dynamic objects localization and tracking. In Proceedings of the IEEE IPSN,
pages 141–141, 2024.

[23] Junyu Yang, Yan Dong, Zhennan Long, Xin Yang, and Bin Han. Rain detec-
tion algorithm based on event camera. Journal of Computer Applications,
43(9):2904, September 2023.

[24] Gopinath Kathiravelu, Terry Lucke, and Peter Nichols. Rain Drop Measure-
ment Techniques: A Review. Water, 8(1):29, January 2016.

[25] Rong Dong, Juan Liao, Bo Li, Huiyu Zhou, and Danny Crookes. Measure-
ments of rainfall rates from videos. In Processings of IEEE CISP-BMEI, pages
1–9, 2017.

[26] Yang Hong, Kaixuan Wei, Linwei Chen, and Ying Fu. Crafting object
detection in very low light. In BMVC, volume 1, pages 1–15, 2021.

[27] Mohd FaridMohdAriff,Mohammad Ehsan Kosnan, ZulkepliMajid, Albert K
Chong, and Khairulnizam M Idris. A study of near-infrared (nir) filter for
surveillance application. Jurnal Teknologi, 77(26), 2015.

[28] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu, and Tobi
Delbruck. A 240× 180 130 db 3 𝜇s latency global shutter spatiotemporal
vision sensor. IEEE Journal of Solid-State Circuits, 49(10):2333–2341, 2014.

[29] Xuecheng Chen, Haoyang Wang, Zuxin Li, Wenbo Ding, Fan Dang,
Chengye Wu, and Xinlei Chen. Deliversense: Efficient delivery drone
scheduling for crowdsensing with deep reinforcement learning. In Proceed-
ings of the UbiComp, pages 403–408, 2022.

[30] Xinlei Chen, Aveek Purohit, Shijia Pan, Carlos Ruiz, Jun Han, Zheng Sun,
FrankMokaya, Patric Tague, and Pei Zhang. Design experiences in minimal-
istic flying sensor node platform through sensorfly. ACM TOSN, 13(4):1–37,
2017.

[31] Zhuozhu Jian, Zejia Liu, Haoyu Shao, Xueqian Wang, Xinlei Chen, and
Bin Liang. Path generation for wheeled robots autonomous navigation on
vegetated terrain. IEEE Robotics and Automation Letters, 2023.

[32] Yuxuan Liu, Haoyang Wang, Fanhang Man, Jingao Xu, Fan Dang, Yunhao
Liu, Xiao-Ping Zhang, and Xinlei Chen. Mobiair: Unleashing sensormobility
for city-scale and fine-grained air-quality monitoring with airbert. In
Proceedings of MobiSys, pages 223–236, 2024.

[33] Xinlei Chen, Susu Xu, Jun Han, Haohao Fu, Xidong Pi, Carlee Joe-Wong,
Yong Li, Lin Zhang, Hae Young Noh, and Pei Zhang. Pas: Prediction-based
actuation system for city-scale ridesharing vehicular mobile crowdsensing.
IEEE Internet of Things Journal, 7(5):3719–3734, 2020.

[34] Xiang Zhang, Wei Liao, Lei Yu, Wen Yang, and Gui-Song Xia. Event-based
synthetic aperture imaging with a hybrid network. In Proceedings of the
IEEE CVPR, pages 14235–14244, 2021.

[35] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scal-
able, efficient, and accurate deep spiking neural networks with backward
residual connections, stochastic softmax, and hybridization. Frontiers in
Neuroscience, 14:653, 2020.

[36] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and
Davide Scaramuzza. Event-based vision meets deep learning on steering
prediction for self-driving cars. In Proceedings of the IEEE CVPR, pages
5419–5427, 2018.

[37] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial trans-
former networks. Processings of NeurIPS, 28, 2015.

[38] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct
training for spiking neural networks: Faster, larger, better. In Proceedings
of the AAAI, pages 1311–1318, 2019.

[39] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. Multi-stage progres-
sive image restoration. In IEEE CVPR, pages 14821–14831, 2021.

[40] Ugur Demir and Gozde Unal. Patch-based image inpainting with generative
adversarial networks. arXiv preprint arXiv:1803.07422, 2018.

[41] Sahil Yadav, Aryan Mehra, Honnesh Rohmetra, Rahul Ratnakumar, and
Pratik Narang. DerainGAN: Single image deraining using wasserstein GAN.
Multimedia Tools and Applications, 80(30):36491–36507, December 2021.

[42] Long Cheng, Ni Liu, Xusen Guo, Yuhao Shen, Zijun Meng, Kai Huang, and
Xiaoqin Zhang. A Novel Rain Removal Approach for Outdoor Dynamic
Vision Sensor Event Videos. Frontiers in Neurorobotics, 16, August 2022.

[43] Christian E. Willert. Event-based imaging velocimetry using pulsed illumi-
nation. Experiments in Fluids, 64(5):98, May 2023.


	ABSTRACT
	1 INTRODUCTION
	2 PROBLEM DEFINITION
	3 METHODOLOGY
	3.1 Event Representation
	3.2 Hybrid Network with SNNs and CNNs
	3.3 Network Training

	4 EVALUATION
	4.1 Dataset Preparation
	4.2 Training Details
	4.3 Rain-free Background Reconstruction
	4.4 Rain Physical Modeling Validation

	5 CONCLUSION
	REFERENCES



