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Abstract

Drone-based rapid and accurate environmental edge detec-
tion is highly advantageous for tasks such as disaster relief
and autonomous navigation. Current methods, using radar
or cameras, raise deployment costs and burden lightweight
drones with high computational demands. In this paper, we
propose AirTouch, a system that transforms the ground ef-
fect from a stability "foe" in traditional flight control views,
into a "friend" for accurate and efficient edge detection. Our
key insight is that analyzing drone sensor readings and flight
commands allows us to detect ground effect changes. Such
changes typically indicate the drone flying over an edge,
making this information valuable for edge detection. We ap-
proach this insight through theoretical analysis, algorithm
design, and implementation, fully leveraging the ground ef-
fect as a new sensing modality without compromising drone
flight stability, thereby achieving accurate and efficient scene
edge detection. Extensive evaluations demonstrate that our
system achieves a high detection accuracy with mean detec-
tion distance errors of 0.051m, outperforming the baseline
performance by 86%.
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1 Introduction

Rapid and accurate terrain exploration of unknown areas is
crucial for disaster response [1, 2], rescue-and-relief [3, 4],
and autonomous navigation [5-7]. A key aspect involves
detecting terrain edges, such as sudden changes in height
(e.g., steps, cliffs) and variations in ground materials (e.g.,
water, soil, solid rock). With prior knowledge of these edges,
systems can plan paths for people and robots more logically,
efficiently, and safely [8-10]. To boost efficiency and cut
costs in large-scale edge detection [11], mainstream systems
leverage swarms of lightweight drones [12] (a.k.a., UAV) to
execute the task collaboratively as they fly and scan the
entire scene [13-16].

Existing drone-based edge detection solutions fall into
two categories: (i) wireless-signal based methods leverage Wi-
Fi[17], UWB [18], mmWave or terahertz (THz) radar [19-21],
LiDAR [22], and acoustic signals [23], etc., to detect edges by
analyzing signal ToF or phase changes [24]. These require
sophisticated hardware, increasing costs and limiting wide-
spread usage. (ii) vision-based solutions employ computer
vision techniques or neural networks to identify edges using
RGB or RGB-D images [25, 26]. While accurate, they demand
substantial computational power, restricting their usage on
resource-constrained lightweight drones [27, 28]. Addition-
ally, visual sensors struggle in low-light or high-dynamic
situations, compromising their robustness.
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Figure 1: (a) Drone utilizes ground effect for edge de-
tection. (b) When drones fly close to the ground, the
increased upward lift is caused by the ground effect. (c)
By detecting variations in ground effect, we can infer
abrupt changes in height or alterations in the surface
material, thereby identifying scene boundaries.

In this work, we aim to introduce a novel approach for
edge detection on lightweight drones, which will serve as
a significant complement to the aforementioned two en-
velopes, especially in situations where computational re-
sources are scarce and scene visibility is low. As illustrated
in Fig.1, when drones fly close to the ground (i.e., a surface):
the airflow generated by the rotating rotors bounces off the
surface below the drone, creating additional upward lift and
leading to disturbances in a drone’s flight. This phenomenon,
widely known as ground effect (GE) [29, 30], varies with
the drone’s altitude above the surface and the type of surface
material.

The key insight behind this work is to translate the ground

effect into a fresh sensing modality for edge detection on
lightweight drones - as shown in Fig.1(b), by identifying
ground effect changes, we can deduce sudden alterations in
the drone’s relative height above a surface or in the surface
material itself, pinpointing the edges within the scene. The
process has similarities with sensing the surface by touching
it using air. However, translating this insight into a practical
system still faces two challenges:
e The target discrepancy between sensing and flight
control complicates ground effect profiling. For the
ground effect, sensing tasks treat it as a friend, aiming to
detect drone flight instability through abrupt changes in sen-
sor readings (e.g., Inertial Measurement Unit (IMU) samples)
to measure it. However, drone flight control systems view
it as a foe, striving to minimize its impact on flight stability.
This leads to sensor (e.g., IMU) readings being extensively
smoothed out after those complex proportional-integral-
derivative (PID) operations [31], challenging the effective
profiling of the ground effect.
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® The noisy sensing data overwhelms the vital feedback
related to the ground effect. The dynamic measurements
from inexpensive, low-power sensors on lightweight drones
make it difficult to extract actual ground-effect-related fluc-
tuations from those complex noises in raw data. The circum-
stance is further complicated by the flight control system’s
smoothing and attenuating functions on the ground effect.
Remark. Under the premise that the flight control module
treats the ground effect as a foe and tries to negate its impact
on drone stability, accurately and efficiently measuring and
profiling the attenuated ground effect from noisy sensor data
is crucial for edge detection.

To tackle the above challenges, we design and implement
AirTouch, the first system that treats the ground effect as
a friend and offers methods to extract related data from on-
board sensors, despite the flight control module’s influence.
Benefiting from AirTouch, the ground effect can be leveraged
as a new sensing modality for tasks such as edge detection.
In general, AirTouch excels in the following three aspects.
e On the sensory input front. We demonstrate that lever-
aging the onboard IMU readings and motor commands from
flight controllers could effectively profile the ground effect.
By examining the complex physical dynamics and drone
stability control, we uncover how drone attitudes (i.e., mea-
sured by the IMU) and control signals (i.e., indicated by mo-
tor commands) interrelate and complement each other. This
combination offers a full insight into the ground effect, even
with the flight control module’s adjustments.

e On the algorithm front. We propose a ground effect-
informed environmental edge detection pipeline, which com-
prises (i) a fluctuation components feature extraction method
and a cascaded cross-spectrum feature fusion technique to
facilitate the extraction of ground-effect-related information
from noisy IMU measurements and motor commands; (ii) a
compact neural network (NN) designed to detect edges from
the extracted features; and (iii) an aerodynamics-instructed
physical filter to further enhance edge detection accuracy.
e On the implementation front. To further boost compu-
tational efficiency and enable lightweight drones to run the
proposed NN in real-time, we apply techniques such as neu-
ral unit pruning and weight quantization on the NN before
deployment. Additionally, during the NN training, we intro-
duce a meticulously designed Disturbance Force-Informed
loss function, incorporating binary cross-entropy loss, to
expedite network convergence and make the network learn
fine-grained bias.

We evaluate the performance of AirTouch by conducting
extensive experiments and comparing it with the baseline
using a real-world testbed. Based on a lightweight drone and
its onboard IMU and motors, we conducted abrupt height
discontinuity edge detection and material interface transition
edge detection, respectively. The results demonstrate that



Foes or Friends:
Embracing Ground Effect for Edge Detection on Lightweight Drones

our system achieves a high detection accuracy with mean
detection distance errors of 0.051m. Furthermore, our system
surpasses the baseline performance by 86% with the same
available sensor information. Note that AirTouch is open-
source on GitHub'.

The main contributions of this paper are as follows:

e We propose AirTouch, as far as we are aware, the
first system that translates the traditionally negative
ground effect into a new, positive sensing modality for
accurate and efficient environmental edge detection.

o We demonstrate that combining IMU sampling and mo-
tor commands provides an effective sensing paradigm
to characterize the ground effect under the influence
of the flight control system. On this basis, we present
a comprehensive neural network-based pipeline for
profiling extracting, and utilizing the ground effect for
sensing tasks from noisy sensory input.

e We develop a prototype system and evaluate the Air-
Touch system through real-world data and in-field
experiments on a lightweight drone by deploying our
system on onboard computing chips. Extensive evalu-
ation results show the effectiveness of our system in
impressive edge detection accuracy on low-cost drones
and low-energy consumption sensors.

The remainder of this paper is structured as follows: §2
presents the core intuition and prerequisites underlying the
AirTouch system. After introducing the system overview in
§3, we elaborate on the two main components of the system
in §4 and §5. In §6, we introduce the implementation. In §7,
we evaluate our system. In §8 and §9, we have a discussion
section and a related work section. In the last, we conclude
this paper in §10.

2 Core intuitions and primers
2.1 Ground Effect and Edge Detection

AirTouch is rooted in the features of the ground effect for a
new sensing modality to detect the edge. When the drone
closely sweeps past a surface, it suffers an extra airflow re-
bounded by the surface beneath its body. The drone’s flight
attitude fluctuates due to the airflow caused by ground ef-
fect. While the ground effect is considered unwanted in a
drone’s routine flight, we leverage this physical phenomenon
as exceptional feedback aids the sensing procedure. More-
over, the variant surfaces have different attributes for the
rebounded airflow, such as the reflection direction and ab-
sorption intensity. Therefore, the change in the drone’s state
under effect contains the discrepancy of variant materials,
and the boundary of different levels of ground effect depicts
the edges.

! https://github.com/ChenyuZhaoTHU/AirTouch
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2.2 Aerodynamics of Quadrotor-like drones

As a flight agent, the drone has states containing global po-
sition p = [px, py. pz] " € R?, velocity v € R?, body angular
velocity @ € R® and attitude rotation matrix R € SO(3).
Then, we can describe the following dynamics:

ma = mg + Rf, +fy,

a=v,v=p,

(1)

Jo =Jw X o + 1y + T4,

R = RM(w),

where a is the acceleration of the drone’s movement, m
and g = [0, 0, —g] are mass and gravity acceleration vec-
tor, respectively. M(+) indicates skew-symmetric mapping.
f, = [0,0,¥]" and f,, are the forces from four rotors thrust
and unknown disturbance force, respectively. To simplify
the formulating, here we assume that there is no natural
wind, so the only unknown disturbance force comes from
the ground effect. ¢ = [V, 7y x, Tu,y» Tu,z] T denotes the output
wrench, which determines the control of quadrotors. u =
[n%,n3,n5,n]T are actuation signal, while ny, ny, ns, ny are
motor rotation speeds. Accordingly, T, = [Ty, Ty Tuz]
and ,, are the torques from four rotors and disturbance. The
thrust ¥ can be derived from ¢ = Hyu, with

O
Lo kil 0kl
Bo=1 . 0 kel 0 | @
Y o € €Q

where kr is thrust coefficient and I, is the length of ro-
tor arm, and cg represents torque coefficient. The critical
factors in the drone stable flight problem are f,, and 7,
from the unknown wind disturbance from GE. Disturbance
force f = [fiux fwy fwz] T and disturbance torques 7, =
[Twpx> Tw,ys Tw,z] | comes from complicated aerodynamics in-
teractions between quadrotors and environment, especially
to the ground. In general, the larger the rotor output power
or the closer the drone is to the ground, the more effect
intensity the disturbance will have [32].

3 System Overview

From the top perspective, we design and deploy the Air-
Touch system to accurately detect the edges of different
surfaces. The system captures implicit features from noisy
raw data with minor and highly dynamic attributes. As Fig.2
illustrated, AirTouch excludes non-relevant components by
extracting distinct characteristics of edges and fusing mul-
tiple features using Fluctuation Component Extraction (§4.2)
and Cascaded Cross-Spectrum Feature Fusion (§4.3) at first.
Then Aerodynamics-Informed Double Phase Physical Filter
(§5.1) conducts two functionalities. The first is alleviating
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§4 Ground Effect Profiling from Motors and IMU
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Figure 2: System Overview. The system is designed based on a physical-informed neural network to capture the
discrepancy of the drone’s state under the impact of the ground effect. It is a new sensing modality with physical

phenomena and the proprioceptive sensing method.

noisy data distraction for precision improvement with Dis-
turbance Force-Informed Loss in Physical Knowledge-aided
Network(§5.2). The second is filtering out false-prone edge
detection from the network output. Then, the final output
can be transformed into edge detection results.

4 Ground Effect Profiling from Motors and
IMU

Instead of relying on additional sensors, AirTouch utilizes
a novel proprioceptive sensing method to detect different
edges by ground effect. It is non-trivial to profile the ground
effect to leverage this sensing method to distinguish the edge.
Therefore, we decided to use IMU and motor signals for the
tasks. Combination of Two Modalities (§4.1) elaborates the
reason by delving into the intricate physical phenomena and
the flight controller working pipeline of the drone to examine
its precise impact thoroughly. Then, the next challenge is
how to represent the different attributes of the ground effect.
A concise and interpretable representation of data captures
the essential characteristics of minor GE and will enhance
the detection result. Aiming at this, we proposed two sub-
modules: Fluctuation Components Feature Extraction (FC-FE)
(§4.2) and Cascaded Cross-Spectrum Feature Fusion (CCS-FF)

(§4.3).

4.1 Combination of Two Modalities

Why both IMU and motors? To sense the ground effect on
drones, one intuitive approach is to utilize an IMU to moni-
tor the drone’s attitude changes. However, relying solely on

) Y Disturbance
l Gravity H Rotor Thrust Force from GE

Figure 3: The forces exerted on the drone under ground
effect. Although forces along other axes also exist, here
only the principle change components of forces, along
the z-axis, are shown.

a single modality of IMU data lacks universality from the
perspective of practical engineering applications. A drone
is equipped with a flight controller (FC) and one of its func-
tions is attitude stability control. FC monitors and adjusts
the drone’s attitude in response to flight commands and envi-
ronmental changes to maintain balance and stability. A sud-
den attitude change and imbalance will be captured by the
IMU sensor and tentatively eliminated by adjusting the mo-
tor speeds [33]. Different FCs exhibit varying performances
of resisting the ground effect. For instance, with high con-
trol precision and fast control loop frequencies, even under
the ground effect, the attitude may not undergo significant
changes, resulting in subtle signal variations in IMUs.
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Figure 4: The left five plots show the distinct features, and the right one is an example of an indistinct feature.
From the heatmaps of the power spectrum, the target periods in the left features coherently have distinct power
increases between 6-8 Hz, while it may not be distinct or stable among other features.

Thus, motor signals and IMU’s attitude information are
coupled and complementary to each other, together
contributing to the whole effect of the ground effect. To
ensure that our ground effect-based detection method sup-
ports drones with different flight controllers, we profile the
ground effect using both IMU and motor modalities from
both a physical force analysis perspective and an input-data
characteristic perspective.

From a physical force analysis perspective, we derive the
disturbance force fy, as the direct impact measurement of the
ground effect. As is shown in Fig.3, we exclude the gravity
and thrust force from net force using Newton’s second law:

fy = ma—mg — Rf,,
¥ = HyW(m), R = RM(w),

0 —gyro. gyroy ®)
M(w) = | gyro; 0 —gyrox |,
—gyroy  gyroy 0

where W(-) is the transform mapping from motors’ PWM
signals m = [my, my, ms, my]" to actuation signal u. Apart
from system parameters, data sources needed in the above
derivation depend on a and @ measured by IMU and m sent
to motors.

Additionally, considering the data characteristic, two modal-
ities contribute to data-driven edge detection. From the fea-
ture extraction results introduced later, we discover that the
influence of the drone attitude and motor signals has dynam-
icity, which means the intensity of the ground effect varies
across different detection trials. For this concern, redundancy
in data sources could reduce the detection failure rate. At the
same time, IMU and motors are delayed and feedback to each
other. Therefore, to enable a comprehensive understanding

of the drone’s attitude and empower edge detection perfor-
mance, our system contains the thorough ground effect’s
features, by leveraging both motor signals and IMU signals
as the source data.

What is data dimension? The attitude change induced
by GE is captured by the flight data of the drone, including
the 3-axis acceleration rate a = [accy, accy, acc,]" from the
acceleration measurement, 3-axis angular acceleration rate
® = [gyrox, gyroy, gyro;]" from the gyroscope, and four
motors’ PWM signals m = [my, my, m3, my] " calculated from
command signals. Here, m is positively proportional to the
motors’ rotation speeds [ny, na, n3, ny] '. Fig.8 illustrates a set
of the raw data collected by the drone.

4.2 Fluctuation Components Feature
Extraction (FC-FE)

We proposed the FC-FE algorithm, a frequency spectrum
analysis-based method to extract features of high sensitivity
and accuracy. It is based on the fluctuation of the attitude and
motor signals. The temporal data source is d = [accy, accy,

accz, gyrox, gyroy, gyroz, my_1, ms—1, ms—1] ' . For normaliza-
tion, my_1, ms_1, and my4_; are the differences between other
three motors and m;. Note that, for the convenience of ex-
planation, we take the height edge detection as the ex-
ample case in §4 and §5. We first examine the heat maps of
power amplitude versus time to explore the useful frequency
components over time in all 9 feature categories, which are
transformed by Short-Time Fourier Transform (STFT) [34].
We analyze the sum power amplitude component P within a
distinct frequency band F. P satisfies the fact that it is dis-
tinguishing at the edge. As illustrated in the left five heat
maps in Fig.4, the power amplitude from 6 to 8 Hz is always
distinctly stronger when the drone sweeps past the edge in
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most data categories. The consistency lies in the rigid con-
tact of IMU sensors and motors during the drone fluctuation.
This particular power cluster reflects the attitude oscillation
of the drone under the ground effect, which is determined
by many factors, such as the drone’s weight, size, propeller
size, performance, and bias of the flight controller, etc. Theo-
retically, such frequency range differs from different drone
types and our tests with larger drones coincide with the ob-
servation. The frequency range can be easily collected and
configured on the system.

We calculate the cumulative power amplitude within F at
each timestamp and take the results as features to distinguish
the edge. Therefore, the smaller the temporal and frequency
resolutions are, the better the performance of real-time ca-
pability and detection precision the system will have. Note
that the resolutions of frequency and temporality correlate
to the window size and overlap size of STFT.

4.3 Cascaded Cross-Spectrum Feature
Fusion (CCS-FF)

We design Cascaded Cross-Spectrum to fuse multiple fea-
tures of each sensor into one synthetic feature, and then
three synthetic features for acceleration rate, angular rate,
and motor signal will be generated. Inspired by the cross-
spectrum, which is a method to assess the correlation be-
tween the components of two signals at the same frequency,
CCS-FF extracts the correlation within one sensor’s different
dimensions to represent a comprehensive characteristic.

Before introducing CCS-FF, we first introduce the cross-
spectrum [35]. If there is a strong correlation between the
two signals at a particular frequency, the amplitude of the
cross-spectrum at the corresponding frequency will be large.
Gyy(f) is the cross-spectrum of two signals x(¢) and y(t),
whose frequency domain represents X (f) and Y(f). The
magnitude component |Gy, (f)| quantifies the degree of cor-
relation between the two signals at the frequency f. Gyy(f)
is defined as the product of X (f) and the conjugate of Y(f),
as shown in the following Eq.4,

Gxy(f) = X(HY*(f). ©)

Meanwhile, as a signal’s power spectral density, a funda-
mental concept used to characterize the power distribution
of a signal across various frequencies in the frequency do-
main can be expressed as Eq.5; thus, the relationship between
|Gy ()], Gxx (f) and Gy () satisfies the relationship as de-
fined in Eq.6.

Gax () = X(HX(f). ®)
|Gy (NP = 1Gxx (HIGyy (). (6)

To this end, the correlation between signals can be cal-
culated using the product of their power spectral densities.
Extending this concept to more than two signals involves
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cascading their cross-spectrum. For n signals with frequency
domain representations X; (f),Xz(f),..Xn(f), we define the
cascaded cross-spectrum P..s(f) and use its magnitude to
measure the degree of correlation between the n signals,
which can be represented as if n is an even number,

Pees ()] = 1X1 (/)X (F)X5(f)-- X5 (N
= VIGrx, (NG, (N1 Gy ().

Note that if n is an odd number, the last term of the first
row should be X, (f). Based on the aforementioned deriva-
tion, the power spectral densities of the extracted features
are multiplied to serve as the synthetic fusion feature provid-
ing correlation information to represent the comprehensive
characteristic. To be specific, 9-dimensional temporal data d
has been transformed into 3-dimensional synthetic NN input
data ¢ = [ag, ws, mg] "

™)

5 Physical Knowledge-aided Light-Weight
Predictor

To facilitate the drone’s real-time and accurate acquisition
of edge information, we employed a lightweight neural net-
works (NN) model for edge prediction. As discussed in the
previous section, the coupling of motor and IMU data chal-
lenges the precise capture of the ground effect. Compared
to traditional methods, NN can better capture the spatio-
temporal relationship between drone sensor fluctuations and
ground effect. By modeling the ground effect, extracting and
fusing features in §4, we obtained the input for the NN (§5.2).
Moreover, we utilized the Aerodynamics-Informed Double
Phase Physical Filter proposed in §5.1 to guide the network
in learning data more efficiently. Given the limited comput-
ing and storage resources of the drone, we also conducted
lightweight processing on the model in §5.3.

5.1 Aerodynamics-Informed Double Phase
Physical Filter

Aerodynamics-Informed Double Phase Physical Filter con-
sists of two functionalities in two phases. One functionality
is that it provides a fine-grained bias serving as a physical
knowledge-based loss item in the NN training phase for alle-
viating noisy data distraction, to improve detection precision.
The other one is that it minimizes the occurrence probability
of false detection caused by edge-irrelevant disturbances in
the global phase. The core intuition is leveraging the inher-
ent disturbance force on the drone, hidden in the distinction
between ground effects separated by the edge. Utilizing Fast
Responded Constant False Alarm Rate Algorithm (FR-CFAR),
the enlightenment of the extra force change could be de-
tected.

Inspired by the aerodynamics analysis introduced in §2.2,
we leverage the unknown disturbance force f,, exerted on
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Figure 5: Disturbance force along the z-axis in height
edge detection in Aerodynamics-Informed Double
Phase Physical Filter. The magnitude of extra upward
lift f,, , is the data source of the physical filter. The con-
vex part of the force represents that the drone suffers
an extra upward lift due to the ground effect.

the drone body to get a glimpse of the height edge detection
process. The fy = [ fux, fw,y> fwz] T is induced by the extra
disturbance of the rebound airflow solely and here we only
focus on the upward force f,, , because the distinct compo-
nent of force change is along z axis in height edge detection.
It is similar in cases of material edge detection, where the dis-
tinct change of force may occur along other axes. f, can be
derived from the acceleration rate a and the rotation speeds
of four motors ny, nay, n3, and ny.

As is shown in Fig.5, the force in the z axis is plotted over
the process of idle, takeoff, hover, and traveling across the
platform. In the beginning, the f,, , is equal to the supporting
force from the ground, whose value is the gravity of the
drone. Then, when the drone is hovering or flying in the
air, this extra force is around zero. Only when the drone is
sweeping over the platform, f,, , have significant increasing
peaks roughly from 29.37 to 32.81 seconds in the plot, roughly
consistent with the ground truth.

To apply physical embedding for the neural network and
exclude the false edge detection caused by data noise or non-
relevant flight operation, a strategy is necessary to capture
the mutation of the disturbance. However, limited by the
environmental parameter accuracy and sensor precision, the
fw measurement may have offset and noise. This makes it
impossible to notice the mutation with a simple constant
threshold. Therefore, we propose the Fast-Respond Constant
False Alarm Rate method to adjust the threshold and recog-
nize the force mutation.

Fast-Respond Constant False Alarm Rate (FR-CFAR).
As is illustrated in Fig.6, we propose an FR-CFAR algorithm
based on procedures of the Cell-Averaging Constant False
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Figure 6: The main procedure of Fast Responded Con-
stant False Alarm Rate (FR-CFAR) algorithm.

Alarm Rate (CA-CFAR) to select the target points, which pro-
vides a constant false detection probability [36]. FR-CFAR
detects target signals in background noise while ensuring a
constant probability of false positives, and also has instant
detection ability. The difference between a normal CA-CFAR
and our FR-CFAR is the omission of the lagging window,
which requires queue time for the following signal that has
not been generated yet. Therefore, without waiting for the
lagging window data, FR-CFAR can respond with the detec-
tion result instantly.

The key scheme is that the algorithm proposes a threshold
level calculated by estimating the noise floor level around
the judged signal sample, cell under test (CUT). If the sig-
nal sample’s magnitude exceeds the threshold, the CUT Y is
considered the target. A group of cells surrounding the Cell
Under Test (CUT) is selected to determine this, and the aver-
age power level is calculated. [Gy, ..., G|, the cells directly
adjacent to the CUT, known as "guard cells", are typically
excluded from this calculation to prevent interference from
the CUT itself, thus preventing a more clean estimate from
adjacent interference. The detection threshold T satisfies the
following relationships:

1 N
Zleading = N be
i=1

T=a- Zleading,

®)

_a
a=N= (P —1),

where Zj¢q4ing is the mean signal value of the N-cell leading
window to estimate the noise level, X; denotes the signal
received in the i th cell in the leading window, and threshold
factor « is adjusted to maintain the false alarm rate at a pre-
determined probability Pr4 [37]. Once the CUT Y exceeds
the dynamic detection threshold T, the disturbance force
alerts a high probability of edge occurring. Correspondingly,
this filter improves detection precision for NN training in
the first physical embedding phase by alleviating noisy data
distraction. For the second phase, the final NN Predictor de-
tection without alerts from disturbance force will be filtered
and ignored.
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5.2 Physical Knowledge-aided Network

The input of our model consists of three-dimensional fused
features denoted as ¢ = [ag, ws, mg] T within a specific time
window, resulting in an input size equal to three times the
window size. The model is designed for binary classification,
where the detection of edges is accomplished by identifying
transitions between the two encoded categories.

To address the specific requirements of edge detection and
energy conservation in our task, we employ a standard NN
architecture. This architecture incorporates convolutional
layers followed by max-pooling layers, which serve to extract
relevant features from the input. To introduce non-linearity
and enhance the model’s capability to learn complex patterns
in the data, Rectified Linear Unit (ReLU) activation functions
are applied after the convolutional layers. The output layer
of the model consists of two units with softmax activation,
enabling the model to generate class probabilities for each
category.

Disturbance Force-Informed (DF) Loss Function. The
incorporation of a physics-informed loss function aims to en-
hance the model’s comprehension of ground effect dynamics.
When a drone encounters an edge, a previously unknown
disturbance force undergoes an abrupt change, serving as a
distinctive indicator for edge detection. By integrating this
force in conjunction with a threshold, our physics-embedded
methodology effectively captures relevant features associ-
ated with ground effects. This approach improves the preci-
sion of edge detection and yields valuable insights into the
flight environment of the drone.

For instance, considering a drone traversing the edge of
an abrupt height change, a state variable switches between
1 and 0 depending on the surface. The edge marks the tran-
sition between these states, with distinct disturbance forces
experienced on each surface. The disturbance force-informed
loss function employed is computed as follows:

1g-11 _ 4 >T.
oo [T I T o)
eldl — 1, others .

where L denotes the physics-informed loss function, which
is designed to measure the model’s prediction error for dis-
turbance forces. The §j represents the predicted state, and
the T is the threshold used to determine if the disturbance
force f,, exceeds a critical value. The disturbance force f,,
and T can be calculated in §5.1.

For this binary classification problem, we utilize the binary
cross-entropy as our fundamental loss function:

Ls =-ylogij - (1-y)log(1-7), (10)

where y is the sample’s actual label (0 or 1), and § is the
predicted probability value output by the model.
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Considering the two loss functions, the overall loss func-
tion for edge detection is:

L=Ls+1-Lp (11)

where A is the coefficient that weighs the contribution of the
disturbance force-informed loss function and can be adjusted
easily in different applications.

5.3 Pruning and Quantization

For the lightweight design of our model, we employed prun-
ing and quantization to reduce complexity, enhance effi-
ciency, and improve performance, making it well-suited for
resource-constrained platforms.

Weight pruning is a technique aimed at reducing the com-
putational complexity of neural networks by eliminating
redundant connections. In our pruning procedure, weights
are systematically pruned based on an adjustable threshold.
Specifically, we first sort the absolute values of all weights
in ascending order to obtain a vector. We then calculated
the threshold, denoted as 6, used to prune weights based on
their magnitude and dynamically adjusted during training.
This systematic approach, in which weights are either re-
tained or set to zero based on their magnitude compared to
the threshold, enables effective weight pruning and leads to
model compression.

Quantization is the establishment of a mapping relation-
ship between floating-point data and fixed-point data. We
denote floating-point real numbers as r and quantized fixed-
point integers as g. The conversion formula between floating-
point and integer is given by:

r=S(q—-2), g=round(r X S) + Z, (12)

where S is the scale factor representing the proportionality
between real and integer values, and Z is the zero point
representing the integer equivalent of 0 in real numbers.
The round function rounds the result of r X S to the nearest
integer.

After weight pruning and quantization, the lightweight
CNN model is obtained with a model compression ratio:

O - (13)
S. " U-spxb

where the original model size is S,, S is the size of the model
after pruning and quantization, the pruning sparsity level is
s¢, and the number of quantization bits is b.

CR =

6 Implementation

To experimentally validate our system for precise edge detec-
tion, we selected the Crazyflie 2.1 nano-quadrotor, including
an STM32F405 MCU and a 250mAh LiPo battery. It weighs
35.6 grams and offers 22.65 GOPS of processing power and
512KB of RAM. Additionally, our test drone is equipped with
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Figure 7: Implementation framework and modules on
the devices.

an Al deck, a Multi-ranger deck, and a Flow deck. The Al
deck, equipped with a GAP8 microcontroller, enhances the
drone’s memory and computational capabilities, which is
crucial for implementing our NN model. The Multi-ranger
deck detects objects around the Crazyflie, while the Flow
deck tracks the drone’s movements.

We implemented the Fluctuation Components Feature Ex-
traction (§4.2), Cascaded Cross-Spectrum Feature Fusion (§4.3)
and Aerodynamics-Informed Double Phase Physical Filter (§5.1)
on the STM32 and then fed the fusion data into our Phys-
ical Knowledge-aided Network (§5.2) on the AI deck, as is
shown in Fig.7. The Al deck communicates with the STM32
on the Crazyflie to obtain the fusion data for the actual model
inference implementation.

7 Evaluation

To this end, we implement a prototype of AirTouch and
perform experiments with different scenes and parameters.
We first introduce the experimental setup and evaluate the
overall performance of our system. Next, we present two
case studies demonstrating our system’s effectiveness and
accuracy in detecting different types of edges. Additionally,
we explore the system’s resilience and evaluate specific com-
ponents’ contributions. Finally, we measured the model’s
weight size, inference speed, and energy consumption to
demonstrate the efficiency of our system.

7.1 Experiment Setup

Parameter Setup and Dataset: We measured Crazyflie’s
mass m, propeller radius D, the distance between rotor axes d,
thrust constant Cr, and air pressure p. The drone is shown in
Fig.10(a). Also, we tested the thrust constant k7 from the real
world using the relationship kr = CrpD*. The data sampling
rate is 100Hz for acceleration rate, angular acceleration rate,
and motor signals. For STFT, we set the window size and
overlap size to 199. In FR-CFAR, we configure the following
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Figure 8: The raw data used in the system. The data
contains the acceleration rates, angular acceleration
rates, and the motor PWM signals from takeoff, normal
flight, to sweeping past the platform surface.

parameters: Pr4 = 1079, leading window size of 50, and
guard cell size of 15. For the dataset, we arranged the testbed
of the height discontinuity platform, which is a drone landing
platform, and several surfaces of different materials to collect
the training dataset. We collect 200 samples for height and
300 for material edge detection.

Network Training: The proposed network is imple-
mented in TensorFlow. We trained the models for 200 epochs
with a fixed batch size of 32. The input window size is 100,
corresponding to a total sequence length of 100 timestamps.
The output represents the probability of the drone either
reaching or not reaching an edge and is encoded using one-
hot encoding, resulting in an output size of 2.

Evaluation Metrics and Ground Truth: The perfor-
mance of our system is evaluated using the detection dis-
tance error, which measures the discrepancy between the
detected edge and the actual edge. The distance error is cal-
culated by converting the time error of detection using the
drone’s velocity. We align the ground truth of the precise
edge location with the IMU and motor signals by calculating
the distance between the drone and the landmark repre-
senting the edge. This distance is recorded by the drone’s
multi-range deck.

Baseline: We tested our system against a low computa-
tional cost frequency spectrum transform method. It first
transforms the raw data using STFT and accumulates the
power at every timestamp. Then, it calculates the sum of cor-
relations using Pearson Correlation Coefficient [3], and the
target detected edge is at the point when the second-order
derivative is equaled to zero.
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Figure 9: Performance. (a) The absolute detection errors in 30 standard flights for the height edge detection. (b) The
absolute detection errors in 30 standard flights for the material edge detection. (c¢) Comparison with the baseline
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different angles to the edge. (f) The comparison among different sets of materials. (g) The efficiency of DF Loss
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7.2 Overall Performance

To evaluate the system’s overall performance, we examined
the accuracy of edge detection for abrupt height discontinu-
ities and material interface transitions across 30 test groups.
Fig.9(a) and 9(b) depict the edge detection distance errors for
the cases. The positive values stand for the early detection
before the drone exactly passes above the edge, while neg-
ative values present the lagging detection. Notably, abrupt
height discontinuities can be regarded as one form of mate-
rial interface transition, where one side of the surface is air.
After analysis, the mean absolute detection distance error

for abrupt height discontinuities was 0.0295m, while it was
0.0362m for material interface transitions.

We compare the edge detection errors of our method with
the baseline. Our method outperforms the baseline in all
sets of detection. The mean absolute error is 0.051 m, much
lower than the baseline at 0.364m, with 86% performance
improvement. This is attributed to the characteristics of the
ground effect refined by our system’s design, so without
profiling the proper characteristics the baseline can only
achieve coarse detection.
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7.3 Case Study: Abrupt Height
Discontinuities

When testing the edge detection performance for abrupt
height discontinuities, we employed a platform setup con-
structed from an acrylic surface platform as illustrated in
Fig.10(b), over which the drone flew horizontally. Due to the
platform’s elevation above the ground, the moment when
the drone flies over the platform represents a scenario of
abrupt height discontinuity at the edge. Furthermore, we
tested the system’s edge detection robustness by varying the
drone’s height above the ground and the angle at which it
approached the edge during horizontal flight.

The height is defined as the vertical distance above the
drone to the platform surface when sweeping past it. As
depicted in Fig.9(d), detection accuracy decreases along with
the height increases. At a height of 4cm, nearly 80% of the
errors fall within 0.05m, while with the heights of 9cm and
12cm, less than 30% of the tests fall within this range. This
trend is attributed to the increased altitude, which weakens
the ground effect and the disturbance. The weaker the effect
brings to the drone, the more challenging it is for detection.

We also explored the influence of the transition angle to
the edge. The horizontal angle is defined as the angle between
the drone’s horizontal flight path and the horizontal normal
to the edge of the platform. Fig.9(e) illustrates that detection
accuracy decreases along with the angle increases. This may
be because the asymmetry of the angle enhances the dynamic
drone attitude, with obscure features. The overlap between
the curves for +10 and -10 degrees, as well as +20 and -20
degrees, suggests that the magnitude of the horizontal angle
significantly impacts the error, not the horizontal direction,
due to the symmetric design of the drone.

7.4 Case Study: Material Interface
Transitions

We conducted four sets of experiments to test the edge detec-
tion performance for Material Interface Transitions. These

"o

included edges between "mat" and "cement", "artificial grass"
and "cement", "water" and "cement", and "artificial grass" and
"mat" (Fig.10(c)-(f)). According to Fig.9(f), the edge detection
error is the largest and most widely ranged for the "mat" and
"cement” edges, with a median error of 0.070 m and a maxi-
mum error of 0.170 m. It is slightly lower but relatively stable
for the "artificial grass" and "cement" edges. The "water" and
"cement” edges exhibit the smallest and most concentrated
detection errors. Approximately 75% of the data falls within
the range of 0.01 m to 0.05 m. The edge detection error be-
tween "artificial grass” and "mat" falls between that of "mat"
and "cement" and that of "artificial grass" and "cement".
The surface natures of different materials generate dif-
ferent ground effects in terms of intensity, frequency, and
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Figure 10: Hardware and testbeds of experiments for
dataset collection and infield experiments.

directional components, leading to different drone behav-
iors. If the discrepancy is more obvious, the detection will be
relatively more accurate because it is easier to capture the
edge-induced change (with higher SNR) and vice versa. For
example, the artificial grass surface’s pronounced texture
and varying height compared to the smooth cement surface
contribute to this distinction in ground effect, making the
edge more discernible for the artificial grass.

7.5 Impact of System Components

Effectiveness of DF Loss Function: To evaluate the effec-
tiveness of the Disturbance Force-Informed (DF) Loss Func-
tion, we conducted a comparative analysis between models
trained with and without the DF loss. As depicted in Fig.9(i),
the introduction of the DF loss lead to a significant reduc-
tion in distance detection errors, with the majority of errors
decreasing from 0.18 m to within 0.10 m. This improvement
demonstrates a substantial accuracy improvement, reaching
44% compared to the model trained without the DF loss.
FC-FE Time Resolution: We also investigated the impact
of time resolution in the Fluctuation Components Feature
Extraction (FC-FE) process. The resolution can be adjusted
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Figure 11: Power consumption measurement Setup us-
ing INA 219 and Arduino.

by modifying the window size and overlap size. As depicted
in Fig.9(h), higher resolutions enhanced the detection per-
formance, resulting in lower distance errors.

NN Input Window Size: To assess the influence of dif-
ferent input window sizes, we conducted experiments on a
standardized dataset. As illustrated in Fig.9(i), the input size
ranging from 100 to 170 exhibited the best results. Consider-
ing the trade-off between model performance and computa-
tional complexity, we chose a window size of 100 as it strikes
a balance, maintaining satisfactory performance levels.

7.6 Model Optimization and Efficiency

After pruning and quantizing our NN model, we observed a
reduction in model size from 141837 Bytes to 14375 Bytes.
Additionally, the inference time was reduced from 0.00271s
to 0.00110s. However, the model’s accuracy on the training
and test sets decreased from 97% to 86%. Notably, the ac-
curacy reduction is deemed acceptable the model size has
been reduced by nearly 10-fold, while the inference speed
has increased by approximately 2.5 times.

To demonstrate the performance and energy efficiency of
AirTouch, we conducted power consumption experiments
by deploying our modules on Crazyflie’s STM32 and the Al
deck’s GAP8 processor. As shown in Fig.11, we utilized the
INA 219 and Arduino to measure the power consumption of
the nano-quadrotor with Al deck during the deployment of
our system on board. The INA 219 is a current sensor that
provides accurate current and voltage measurements.

Table.1 shows that the network module consumes the most
power, 33 mW, contributing significantly to the total system
power consumption of 121 mW. However, the power con-
sumption for driving the drone’s propellers during flight is
approximately 3000 mW. Therefore, the energy consumption
of our proposed system is negligible.

8 Discussion

In this section, we provide explanations of some concerns.
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Table 1: System power consumption

Module Power (mW)
Basic drone module power 78
Fluctuation Components 6
Feature Extraction

Cascaded Cross-Spectrum 2
Feature Fusion

Aerodynamics-Informed Double 2
Phase Physical Filter

Physical Knowledge-aided Network 33
Total Power 121

8.1 Sensing Range

In §7.3, the results show the sensing effectiveness degraded
significantly above 12 cm. In fact, the sensing range is extend-
able with larger, heavier drones. From the theoretical aspect,
according to recent studies of aerodynamics and ground ef-
fect [29, 38], larger drones, longer propellers, and heavier
weights generate more intense airflows and GE, even when
flying at the same altitude. As a result, the GE will dissipate
over a greater distance for detection. Also from the observa-
tion in our prior experiments, a drone weighing 2.5 kg with
a diagonal span of 450 mm and propellers of 100 mm could
detect GE from approximately 3 meters above, showing the
possibility of sensing range extension.

8.2 Wind Conditions

AirTouch works well without relying on a completely wind-
less environment. On the evaluation front, the performance
results in §7 do not completely exclude the winds although
the system is tested indoors. In our experiments, varying
wind conditions were created by frequently opening doors,
windows, and using air conditioners. Therefore, the consis-
tent performance results reported in this paper could demon-
strate the system’s robustness. On the technical front, Air-
Touch focuses on sudden changes in airflow rather than
its absolute strength to detect edges. Relative steady winds,
without abrupt changes during the instant moment over an
edge, do not significantly impact the system’s performance.

8.3 Comparison With Vision

AirTouch is a compact and complementary solution for edge
detection and it shows various apparent advantages over
vision-based methods. First, in terms of resource effi-
ciency, AirTouch demonstrates a significant reduction in
computational and memory requirements. According to our
tests, it requires only 0.28 million FLOPs and 13KB of neu-
ral network parameters, amounting to 0.007% of the FLOPs
and 22% of the parameter size found in state-of-the-art light-
weight vision neural networks (i.e., FLOPs: 3900 million,
parameter size: 58 KB) [39]. Although a low-resolution cam-
era (320x320 grayscale) processes millions of bits per frame,
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AirTouch uses only 32kbits—substantially less. Additionally,
our use of advanced techniques like factorized optimization
and group convolution holds promise for further reducing its
resource footprint. Second, regarding capability, AirTouch
is designed to complement, not replace, existing approaches.
Visual modalities often fail in low-light conditions or when
materials have similar colors and textures. In contrast, Air-
Touch can identify edges based on distinct physical prop-
erties, making it a valuable addition or even an emergency
backup in cases of critical system failures.

8.4 Complex Edge Scenarios

For now, AirTouch can effectively detect quadrilateral edges
but may encounter limitations with more complex shapes or
edges between surfaces of similar natures. To address these
challenges, future work may focus on several key areas. For
irregular shape detection, employing advanced flight path
planning techniques can improve sensing trajectories and
facilitate better detection of varied geometries of targets. Be-
sides, upgrading edge detection algorithms by training mod-
els on diverse datasets of intricate shapes also contributes
to detection compatibility. For scenarios involving edges of
similar materials, integrating supplementary sensing modal-
ities like depth sensors or cameras, can provide additional
data and improve the detection success rate.

9 Related Work

We review the most related works in this section.

Terrain exploration. Terrain exploration holds signifi-
cant importance across various fields and activities, encom-
passing everything from scientific research to disaster re-
sponse [40, 41]. In disaster management, whether respond-
ing to natural disasters like earthquakes[16, 42], floods[43],
or wildfires [44], or human-made disasters like industrial
accidents [45], terrain knowledge is crucial for rescue and
relief operations [46, 47]. Autonomous robots also rely on
terrain understanding for efficient and safe navigation [48].
Analyzing terrain features such as slopes, obstacles, and un-
even surfaces enables effective path planning and obstacle
avoidance [49, 50]. One critical aspect of terrain exploration
entails the detection of terrain edges, encompassing a range
of features such as abrupt changes in elevation like steps and
cliffs, as well as variations in ground materials, including
water bodies, soil compositions, or solid rock formations.

Drone-based edge detection. To enhance efficiency and
reduce costs in large-scale edge detection, prevalent systems
employ swarms of lightweight drones [14, 51]. These drones
operate collaboratively, scanning the entire scene to achieve
comprehensive coverage [52], with more flexibility compared
with ground vehicles [53, 54]. However, current drone-based
edge detection methods face challenges, categorized into
two main types: (i) Wireless-signal based methods: These
methods utilize signals like mmWave Radar [1], Wi-Fi [55],
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terahertz radar [20], LiDAR [56], and acoustic signals [57] for
contactless edge detection. While effective, they often rely on
infrastructure and struggle with operations in inaccessible ar-
eas [58]. (ii) Visual-sensor based methods: These algorithms
aim to accurately detect object boundaries using computer
vision techniques or neural networks[59-61]. However, they
require significant computational resources, limiting their
deployment on resource-constrained drones [62]. Further-
more, existing pioneer study [63] proposes multi-modal fu-
sion sensing, achieving promising accuracy by integrating
the information from both wireless and visual domains.

Ground effect of drones. Achieving precise control over
drone positions is paramount, yet remains a considerable
challenge [64, 65]. This challenge is predominantly attributed
to the intricate interplay between rotor and wing airflows
with the ground surface [66, 67]. The aerospace industry
has recognized the ground effect for some time, acknowl-
edging its potential to amplify lift forces while decreasing
aerodynamic drag [68, 69]. Despite advantages, they also
pose challenges to flight stability [70]. Consequently, mit-
igating the impacts of ground effect has been a persistent
issue [71]. In contrast, this paper diverges from conventional
approaches by harnessing the ground effect to detect edges
rather than attempting to neutralize it. As far as we are aware,
it is the first system to perform edge detection without the
use of additional sensors.

10 Conclusion

In conclusion, this paper introduces AirTouch, a propriocep-
tive sensing system that transforms the traditionally negative
ground effect into a positive sensing modality for environ-
mental edge detection. By combining IMU and motor signals,
AirTouch successfully captures and analyzes the ground ef-
fect, providing a novel and effective approach for precise
and efficient sensing tasks. The presented system exhibits
notable performance in edge detection accuracy on light-
weight drones while considering energy consumption and
limited computational resources. These achievements high-
light the system’s potential to enhance the capabilities of
drones across diverse environments. Future research will con-
centrate on extending edge detection capabilities to mobile
platforms, facilitating air-ground coordination and collabo-
ration. Also, we will extend the AirTouch with multimodal
fusion techniques to fully utilize its potential. As an initial
work, this new sensing modality could benefit the commu-
nity and inspire further research into its varied applications.
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