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ABSTRACT

Accurately localizing high-speed dynamic objects in 3D space with
low latency is crucial for various robotic applications. Current meth-
ods face challenges due to extended exposure times and limited
sensor resolution, hindering precise object detection and localiza-
tion. Event cameras, known for their high temporal resolution and
asynchronous nature, offer a promising solution. To leverage the po-
tential of the event camera, we propose EventTracker, a novel frame-
work that integrates event and depth measurements for precise and
low-latency 3D localization and tracking of the high-speed dynamic
object. EventTracker incorporates a collaborative object detection
and tracking algorithm optimized for both event and depth data,
overcoming detection and registration challenges. Additionally, a
graph-instructed optimization algorithm enhances accuracy by fus-
ing heterogeneous sensor data effectively. Experimental evaluation
in dynamic environments demonstrates significant improvements
in localization performance compared to baseline methods.

CCS CONCEPTS

« Computer systems organization — Sensors and actuators; «
Computing methodologies — Optimization algorithms.
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Figure 1: Illustration of the importance of high-speed per-
ception.

1 INTRODUCTION

The ability of localizing dynamic objects at high speeds is crucial
for various robots operations [1, 2] and even swarm control [3,
4]. Specifically, accurately estimating the location of high-speed
objects in 3D space with low latency allows robots to have more
reaction time and perform precise operations during interactions
with objects [5, 6]. This capability is critically important in various
robotic applications, such as enabling autonomous vehicles to avoid
sudden pedestrians [7, 8], or helping drones evade unexpected
obstacles [9, 10] (Fig.1). In these scenarios, even a slight delay or
inaccuracy leads to significant failures, causing financial loss and
threatening safety [11, 12].

Unfortunately, current methods are not able to offer feasible so-
lutions for accurate and low-latency localization of the high-speed
object, which can be divided into two categories:

Frame camera-based solutions. Using classical visual feature
matching or learning-based techniques, these methods achieve ob-
ject localization with frame camera [13, 14]. However, they suffer
from lengthy localization latency due to extended frame exposure
times (around 20ms) and additional image processing delays (an-
other 10 ~ 20ms) [15]. Furthermore, motion blur in each frame
confuses the algorithm, exacerbating the localization error [16].

LiDAR and radar-based solutions. Current practices employ
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Figure 2: Overview of EventTracker.

filter and learning-based techniques for object tracking with LIDAR
and radar sensors [17, 18]. These sensors operate by emitting light
or frequency-modulated continuous waves in a specific spectrum,
and these methods calculate the distance and angle to the object
based on the reflected signals [19]. However, these methods suffer
from cumulative drift due to limited spatial resolution and have a
restricted field of view, resulting in a low object detection rate [20].
Remark. In summary, the lack of low-latency sensors and efficient
algorithms makes 3D localization and tracking of the high-speed
object challenging.

3D object localization with event and depth. Event cameras,
characterized by their asynchronous and motion-activated nature
and microsecond-level temporal resolution, are increasingly used in
high-frequency detection [21, 22]. This trend motivates our explo-
ration of leveraging these asynchronous measurements to enhance
3D tracking of high-speed object. Although event cameras excel
at capturing fast-moving objects within their field of view then
reacting fast[23, 24], they face challenges with scale uncertainty,
which impedes accurate localization. In this work, we incorporate
a depth camera to overcome this limitation and recover the scale in
monocular sensing [25].

Albeit inspiring, translating this intuition into a practical 3D ob-
ject localization system is non-trivial and two technical challenges
have to be solved:

C1: Event burst hinders object detection. Event cameras are
highly sensitive to light changes and often produce numerous
environment-triggered events, leading to event burst [26]. The
event burst makes rapid and accurate object detection difficult and
poses challenges for registering event camera detection result with
depth camera data.

C2: Heterogeneous data impedes sensor fusion. The event
camera is sensitive to light changes caused by object motion, gener-
ating asynchronous events, while the depth camera provides depth
information for each pixel. The data from these sensors pose dif-
ferent precision and density. This spatial heterogeneity presents
challenges for data fusion. Additionally, the sensing delays between

event and depth cameras vary. This temporal heterogeneity add
complexity.

Our work. To tackle the above challenges, we design and imple-
ment EventTracker, the first framework to effectively fuse event
and depth measurements for precise, low-latency 3D localization
and tracking of the high-speed dynamic object. EventTracker can
be integrated into autonomous vehicles and delivery drones, en-
abling them to achieve 3D tracking and avoidance of pedestrians
and obstacles.

In EventTracker, we first reduce environmental noise’s impact
on event and depth-based object detection by devising a Collabo-
rative Object Detection and Tracking module. Concurrently, the
object’s detection by the event camera guides segmentation on the
depth map, effectively addressing registration-related challenges.
Second, to achieve high-accuracy 3D tracking of the high-speed
object, we introduce a graph-instructed localization algorithm. This
algorithm harmonizes heterogeneous observations from both cam-
eras through joint optimization in a tightly coupled manner. Also,
extensive experiments in indoor environments are conducted to
comprehensively evaluate performance of EventTracker, which
show that the localization performance of our method improves
38.5% on average compared with the baseline.

The contributions of this paper are as follows:

e We propose EventTracker, the first framework that effectively
fuses event and depth measurements for precise, low-latency 3D
tracking of the high-speed dynamic object.

e We introduce a collaborative object detection and tracking algo-
rithm that fully leverages depth and event measurements for object
detection.

e We design a novel graph-instructed optimization algorithm that
fuses heterogeneous data with different spatial and temporal reso-
lutions, achieving continuous 3D location estimation for moving
objects.

e We implement EventTracker and conduct extensive quantita-
tive and qualitative experiments in dynamic scenarios and noisy
environments to validate our method.
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Figure 3: Illustration of event tracker.

The rest of this paper is organized as follows: Section 2 provides
an overview of EventTracker. Section 3 details our system design
and methodology. In Section 4, we present experimental results for
performance evaluation. Finally, Section 5 concludes the paper.

2 OVERVIEW

Our framework is illustrated in Fig.2. This framework consists of
two parts: collaborative object detection and tracking, and graph-
instructed 3D position estimation.

Firstly, we handle cross-model data separately with the event
tracker and depth tracker. The event tracker accumulates events,
filters out noise, and employs a grid-based clustering algorithm to
quickly locate the moving object, followed by EKF-based tracking.
The depth tracker then receives several region of interest, and use
its depth information to target the wanted region while providing
its position on the third axis. Also, a continuous mutual check will
be attached to the system for denoise and target association.

Secondly, graph optimization integrates data from event, depth,
and motion factors. By leveraging residuals and our designed cost
functions, we fuse these heterogeneous observations to optimize
3D position estimation.

3 SYSTEM DESIGN

In this section, we detail the system overview and the integrated
workflow for robust object tracking through event and depth data
processing. Section 3.1 details the design of the collaborative object
detection and tracking component. Section 3.2 discusses the jointly
graph-instructed estimation optimizer proposed in our system.

3.1 Collaborative Object Detection and Tracking

In this section, we transform image and event input into positional
values. The event tracker and depth tracker operate independently
to compute positions in three axes and perform continuous mutual
filtering.

3.1.1 Event Tracker. EventTracker is designed to continuously
monitor and track the position coordinates of moving objects within
rapidly generated event streams. The raw generated event is sus-
ceptible to noise ( Fig.3a).

Filter. We initially employ threshold filtering on the time image
to preliminarily eliminate some noise. In time image, each pixel
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Figure 4: Illustration of depth tracker.

represents the average timestamp of all events occurring at that
pixel. It allows for the event data to be dimensionally reduced to a
more manageable 2D image while retaining its temporal factor.

Specifically, for each pixel (i, j), the value T;; in its time image
T is calculated. This value is the average of the timestamps of all
events on that pixel, i.e.,

Tijz% Z t

Y titeg;;

,where I;;j represents the number of events mapped to pixel (i, ),
and &;; represents the set of events on the pixel.

Since T is generated based on the time information of the event
stream, an increase in pixel value typically indicates the presence
of more moving objects or activity at that location. By applying
threshold filtering, we can roughly filter the noise out. Fig.3b shows
the denoised event plane.

Cluster. Then we segregate and cluster the moving objects from
the denoised event. We leverage a grid-based clustering approach,
partitioning the field of view (FOV) of the camera into fundamental
cells using a regular grid, as shown in Fig.3c. Within a specific time
slice, a cell that hosts a variety of events surpassing a predefined
threshold can be designated as an active cell. The adjacent active
cells will be aggregated into one cluster, a box. With a structured
grid in partitioning, the approach reduces algorithmic complexity
and conserves resources, laying the foundation for tracking and
segmentation algorithms.

EKF-based Tracking. After clustering, each cluster is asso-
ciated with the nearest tracker box in Fig.3d based on distance
calculations. A simple motion model predicts the initial position
of the tracking target for preliminary location estimation. This
approximation provides an initial forecast, enhanced later by the
Extended Kalman Filter (EKF) for more precise predictions and up-
dates over subsequent time steps. The EKF, integrated with motion
and observatory data, continually refines the estimated target state,
utilizing the Kalman gain to effectively handle system noise and
improve accuracy in target state estimation.

3.1.2 Depth Tracker. Through the aforementioned algorithm,
we obtain the positional values of moving objects from event. The
detection results are output in the form of rectangular boxes. The
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center of the box is set as the center point of moving object. How-
ever, the detection results still contain a substantial number of mov-
ing objects owing to their exposure to cacophonous environments
and the impact from multiple moving items. Depth information is
subsequently introduced for further filtration and depth perception.

As depicted in Fig.4, boxes from the event slice are projected onto
the depth map plane to generate ROIs, whose depth information
are then harnessed for filtration and precise tracking of specific
object. Theoretically, it is possible to simultaneously track multiple
moving objects. The focus of our implementation is the process of
associating a box with depth segmentation.

Firstly, the depth image is registered to the event plane according
to the intrinsic and extrinsic matrices. Next, we project the ROI
boxes onto the depth image and utilize the depth histogram to locate
the object at the wanted depth.Once the target box is determined,
the event tracker will categorize the others as noise, concentrating
exclusively on tracking the selected box.

Hence, the 2D position of the object and its depth have been
collaboratively estimated. Throughout this process, data from event
and depth undergo mutual filtering to achieve the objective of
tracking a specific object.

3.1.3 Vision-based Position Estimation. We assume the event
camera follows a conventional pinhole camera model, neglecting
distortion errors. The projection function 7 : R3 — Q converts a
3D point X in camera reference coordinate E into a 2D pixel x in
the image plane, where x € Q ¢ R2. Specifically,

XE XE

fxFE +ox
n(Xg) =" $~ . Xg=|Ye
fyZ_E +Cy ZE

where f and f represent the camera focal lengths, and cx and ¢y
are the principal points. The center of boxes detected in collabo-
rative tracker is our observed point. We can estimate the object’s
preliminary location under E at time #; with the center point of
bounding box proposal as

ti _ t; ti _ t; t; ti
x’—n(XE)+v’—7r(XO +tEO)+v’

where Xéi represents the corresponding 3D point of center point
xti in the object reference, and ov'i denotes the random noise of
center point.

3.2 Graph-Instructed 3D Position Estimation

Due to the disparate frequencies of input sources from the event
camera and the depth camera, a straightforward superimposition is
not feasible. Therefore, we propose a graph-instructed 3d position
estimation optimization framework.

As illustrated in Fig.5, we have developed inter-frame tracking
and long-term local pose tracking systems to achieve continuous
and highly precise position estimation. Inter-frame tracking in-
tegrates residuals from multiple modalities to estimate the next
position, while local pose tracking employs a sliding window for
joint optimization across multiple poses, ensuring a smooth trajec-
tory.

3.2.1 Inter-frame tracking. The optimization problem can be
formulated as follows:
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Figure 5: Illustration of graph optimization.

* . ti ti
X =arg m)}n Z (Edepth + Epmj)
1

where Eé’e pth and Eé’e oth represent the event and depth errors.

Event residual The event residual arises from the projection
error when the estimated 3D position is converted to the 2D plane
of the event camera. In the Fast Tracking section, we acquire obser-
vation coordinates x’t of detected moving objects at time ¢;.

Now, we need to perform a coordinate system transformation
to project the estimated three-dimensional position onto imaging
plane of the event camera.

Let Xg be the three-dimensional position of the moving object
at time ¢;. And the event camera projection error term can be given
as:

x" = Reo (Xg (k)) +150

2
t; _ t; t;
Eproj _p(Hx _”(XE) QE)

Note that the p() indicates the Huber loss function used here to
increase its resilience to outliers.

Depth residual Acquiring the depth residual is more straight-
forward. It is the distance error between the estimated position
and the depth observation. The depth camera distance error can be
given as:

t; ti b _ti
X5 = x4, 2]

= R]tDiE (X(t)’ (k) + tEO) +tpE

o)

Motion model Similar to various modern SLAM systems, we
utilize a constant velocity model to enforce constraints between
the current object position and the previous position.

L — ti _ ti
Edepth =P (”d "= 7p

i il _ ztiel _ sti-2
'ro " tk0  =tk0 ~ k0"

We primarily use a simple motion model to perform prior posi-
tion estimation. After initial estimation, we employ the Levenberg-
Marquardt algorithm to minimize the sum of residuals, thereby
solving out the parameters x’/that fit best.

3.2.2 Local Pose Tracking with slide window. As shown in
Fig.5 , approximately every few seconds (typically, a keyframe is
selected), the local pose tracking corrects accumulated errors. Using
a sliding window approach, it processes all frames following the
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Figure 7: Overall performance of trajectory error.

most recent keyframe as input and optimizes pose jointly. Denote
the set of frames as  , the optimization problem is formulated as:
i

* _ : i
X =arg m);n lez;_ (Edepth + Eproj)

where Eéep h and E! represent the event and depth errors.

t depth

4 EVALUATION
4.1 Experimental Setup

Setting To validate our proposed approach, we conducted experi-
ments in a laboratory setting. We utilized a Intel Realsense D435i
depth camera and a Prophesee EVK4 HD event camera for data col-
lection (Fig.6a). Meanwhile, we employed a motion capture system
with fourteen NOKOV cameras (Fig.6b) to collect ground truth at
the frequency of 240hz. In our experiment, we aimed to validate
our 3D tracking system by estimating the position and trajectory of
dynamically moving objects such as balls and drones. These objects
exhibited different and random movement patterns, providing a
robust test for our tracking algorithm.

Evaluation Metrics Relative Pose Error (RPE) and Absolute
Pose Error (APE) are employed as evaluation metrics to separately
assess the local and global localization accuracy of the tracking
algorithm.

Baseline We benchmark our method against another event-
based fast-moving object detection approach[23]. It leverages tem-
poral information from asynchronous event streams for object
detection in the event plane and incorporates additional size infor-
mation to estimate depth.

4.2 Overall Performance

Here, we showcase the overall performance in ball-throwing scenar-
i0s. The comparison of results highlights EventTracker’s superiority
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over the baseline algorithm across all evaluation metrics. Event-
Tracker achieves high accuracy consistently at high frequencies.

From Fig.7, it is visually evident that our method more accurately
fits the trajectory curve compared to the continuous positions es-
timated by the baseline method. Though, there is a slight loss of
accuracy when the object changes its direction, our method closely
tracks the ground truth for most of the time. Also, we plot the rela-
tive pose error and absolute pose error along with the timestamp
in Fig.7b and Fig.7c . Our analysis reveals that our method achieves
a mean APE of 0.037m and a mean RPE of 0.082m, which improves
38.5% on the average RPE compared with the baseline. Notably, all
absolute pose errors for our estimations are less than 8cm, signifi-
cantly outperforming the baseline, which has pose errors exceeding
20cm. This demonstrates that the long-term sliding windows for
collaborative optimization in our design significantly enhance the
precision and consistency of estimations over time.

The cumulative distribution function (CDF) graph plotted in
Fig.8 of RPE illustrates the error distribution, revealing that ap-
proximately 70% of the estimated poses have errors less than 8cm.
Compared to the baseline, the cumulative distribution of APE ex-
hibits a sharper rise and a lower error range, indicating the superior
performance of our method. Unlike the baseline method, which
relies solely on event data, our approach effectively filters out noise
and distractions, while reducing residuals from various sources,
thereby achieving greater precision.

5 CONCLUSION

In this paper, we propose a Collaborative 3D Object Tracking Sys-
tem framework that leverages event and depth measurements for
tracking moving objects. We design both an event tracker and a
depth tracker to detect and track objects collaboratively. To fuse
the heterogeneous data, we develop a graph-based 3D position
estimation technique. Experimental results demonstrate that our
method achieves superior high-speed and high-accuracy tracking
performance. Such high-precision object pose estimation can also
be applied to swarm control, where many algorithms rely on UAVs
with strong perception capabilities [27, 28]. The integration of event
cameras offers significant advancements in this area, which is one
of our future research directions.
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